

Annastraße 15 64285 Darmstadt

Telefon:

(0049) 06151/2904-0

Telefax:

(0049) 06151/2904-97

eMail:

info@iwu.de

Internet:

http://www.iwu.de

Energiebilanz- Toolbox

Arbeitshilfe und Ergänzungen zum Energiepass Heizung/Warmwasser

O:\EPHW\Toolbox\EPHW-Toolbox TL WORD7.doc Ausdruck:17.12.2001 09:32

Autoren: Tobias Loga

Rolf Born

Marc Großklos Matthias Bially

unter Mitwirkung / Verwendung von Beiträgen von:

W. Ebel, W. Eicke-Hennig (IWU)

B. Siepe (GERTEC)

C. Kahlert, M. Laidig, G. Lude (ebök)

D. Kehl

U. Imkeller-Benjes (Stadtwerke Hannover)

K.-D. Clausnitzer (BEI)

H.-J. Radermacher

1. Auflage

Darmstadt, den 13. Dez. 2001

ISBN-Nr.: 3-932074-52-1

IWU-Bestellnummer: 11/01

INSTITUT WOHNEN UND UMWELT GMBH

Annastraße 15

64285 Darmstadt

Fon: 06151/2904-0 / Fax: -97

Internet: www.iwu.de

Inhalt

0 Vorbemerkung	1
1 Ermittlung und Bewertung der energetischen Qualität von Gebäuden	2
1.1 Verbrauchs- und Bedarfskennwerte	2
1.2 Kenngrößen im Energiepass	3
1.3 Klassifizierung	
1.4 Energiekennwerte für verschiedene Berechnungsmodi	
1.5 Grob- und Feindiagnose – Abstufung der Präzision in der Energieberatung	
2 Standardannahmen und Vereinfachungen für die Gebäude-Grobdiagnose .	7
2.1 Gebäudegeometrie	7
2.2 Bauteil-Konstruktionen	7
2.3 Fenster	12
2.4 Geometrische Grunddaten für die Abschätzung von Leitungslängen	13
2.5 Heizwärme-Verteilung	
2.5.1 Wärmeverluste	
2.5.2 Leitungslängen	
2.6 Trinkwarmwasser-Verteilung	
2.6.1 Wärmeverluste	
2.7 Trinkwarmwasser-Speicherung	
2.8 Wärmeerzeugung	
2.8.1 Kessel und andere Wärmeerzeuger	
2.8.2 Thermische Solaranlagen	
2.9 Nutzbarkeit der Wärmeverluste – Heizwärmegutschrift	24
2.10 Regelung	25
2.10.1 Wärmebedarf für die Wärmeübergabe im Raum	
2.10.2 Thermostatventile	
2.10.3 Vorlauftemperatur-Regelung	
2.11 Elektro-Hilfsgeräte von Zentralheizungsanlagen	
2.11.2 Wandhängende Wärmeerzeuger mit integrierten Pumpen	
2.11.3 Umwälzpumpen	28
2.11.4 Stromverbrauch von Regelungen	32

3 Nutzungs- und Klimadaten	33
3.1 "Norm-Nutzung" als Grundlage für den Norm-Kennwert	33
3.2 "Typische Nutzung" als Grundlage für den Objekt-Kennwert	33
3.2.1 Typische Raumtemperaturen: Räumlich und zeitlich eingeschränkte Beheizung 3.2.2 Typischer Luftwechsel	33
3.3 Abgleich mit gemessenen Verbrauchsdaten in der Energieberatung	
3.3.1 "Individuelle Nutzung"	
3.3.2 Anpassungsfaktor	
3.4 Standard-Klimadaten Deutschland als Grundlage für den "Norm-Kennwert"	40
3.5 Regionale oder lokale Klimadaten als Grundlage für den "Objekt-Kennwert"	
4 Weitere Ergänzungen	41
4.1 Energiebezugsfläche	41
4.1.1 Flächenbezug des Norm-Kennwertes	
4.1.2 Flächenbezug des Objekt-Kennwertes	
4.1.3 Umrechnung: reale Flächen -> A _N	
4.2 U-Werte Fenster	42
4.3 Wärmeverluste von Rohrleitungen	46
4.4 Kesselnutzungsgrade für Software-Anwendungen	47
4.5 Standardwerte für Energiegehalt und Dichte von Brennstoffen	
4.6 Aktualisierung der Primärenergie- und CO₂-Emissionsfaktoren	
	-

Anhang A Literatur

Anhang B Klimadaten für verschiedene Standorte in Deutschland

Anhang C Elektrische Hilfsenergie - Ansätze zur Bestimmung des Strombedarfs von Zentralheizungsanlagen

0 Vorbemerkung

Die "Energiebilanz-Toolbox" ist eine Ergänzung zum Energiepass Heizung/Warmwasser [EPHW 1997] und erweitert dessen Anwendungsbereich insbesondere auf die Energieberatung im Altbau. Sie enthält Vereinfachungen und Konventionen für die energetische Bilanzierung, die sowohl für den Energieberater als auch für Software-Anbieter nützlich sein können. Ein Teil der hier dargestellten Werkzeuge wurde bereits in früheren Dokumenten veröffentlicht:

- Leitfaden Energiebewußte Gebäudeplanung [LEG]
- Die Heizenergie-Einsparmöglichkeiten durch Verbesserung des Wärmeschutzes typischer hessischer Wohngebäude [Eicke-Hennig/Siepe 1997]
- Vereinfachungen für den Anwendungsfall "Energie-Kurzberatung" Ergänzung zum Energiepaß Heizung/Warmwasser [IWU 1998]
- Räumlich und zeitlich eingeschränkte Beheizung. Korrekturfaktoren zur Berücksichtigung in stationären Bilanzverfahren [Loga/Kahlert/Laidig/Lude 1999]
- Bewertungsraster für die Energie-Effizienz von Gebäuden [Loga/Born 1999]

Die neue Energieeinsparverordnung und die zu Grunde liegende neue Norm DIN V 4701-10 greifen in wesentlichen Punkten Ansätze des 1997 eingeführten Energiepass Heizung-Warmwasser [EPHW 1997] auf. So werden die Heizsysteme in die energetische Bewertung von Gebäuden mit einbezogen und Werte auf den Ebenen Nutz-, End- und Primärenergie berechnet. Auch die Bilanzierung dreier unabhängiger Teilsysteme mit unterschiedlichen Wärmeerzeugern und Energieträgern und die Einbeziehung der elektrischen Hilfsenergien entspricht der Systematik von [EPHW 1997].

Die Energiebilanz-Toolbox soll u.a. den Anschluss des Energiepasses an die DIN-Normen bzw. die EnEV herstellen. Mit dem erweiterten Verfahren wird es möglich sein, sowohl einen Nachweis nach EnEV zu führen, als auch mit dem gleichen Werkzeug in der vom [EPHW 1997] bekannten Qualität weiter zu optimieren und einen objektbezogenen Energiepass auszustellen. Damit steht ein universelles Arbeitswerkzeug für Neu- und Altbau zur Verfügung, das – bei allen Vereinfachungen – den Anspruch hat, möglichst nahe am realen Heizenergieverbrauch liegende Energiekennwerte zu berechnen.

1 Ermittlung und Bewertung der energetischen Qualität von Gebäuden

1.1 Verbrauchs- und Bedarfskennwerte

Die eigentliche Zielgröße bei der Bewertung der energetischen Qualität von Gebäuden ist der tatsächliche Verbrauch der jeweilig eingesetzten Energieträger. Dieser bestimmt unmittelbar die Verbrauchskosten, den Ressourcenverbrauch und die Umweltbelastung. Gleichzeitig stellt das Erfassen des Energieverbrauchs im Grundsatz auch die einfachste Art der energetischen Bewertung eines Altbaus dar. In der Praxis unterliegt die Verwendung von Verbrauchskennwerten jedoch verschiedenen Einschränkungen:

- Gemessene Verbrauchswerte sind nicht für jedes Gebäude verfügbar: vor allem für Geschosswohnungsbauten mit Einzelheizungen und direkter Abrechnung zwischen Mieter und Energieversorgungsunternehmen (z.B. Gas-Etagenheizungen); außerdem bei Eigentümer- oder Bewohnerwechsel.
- Oftmals muss der Warmwasserverbrauch herausgerechnet werden, was größere Unsicherheiten mit sich bringt.
- Das Verhalten des Nutzers (Raumtemperatur, Lüftungsverhalten etc.) verursacht Schwankungen des Heizenergieverbrauchs um mehr als 50%. Aussagekräftig im Hinblick auf die energetische Qualität des Gebäudes ist der Verbrauchskennwert nur dann, wenn das Nutzerverhalten gut bekannt ist (z.B. selbst genutztes Einfamilienhaus) oder eine genügend große Zahl von Bewohnern vorhanden ist, deren unterschiedliche Verhaltensweisen sich herausmitteln (Mehrfamilienhäuser mit mindestens 20 Wohnungen).

Verbrauchsmessungen können in der Praxis also Anhaltspunkte für die energetische Qualität des Gebäudes liefern – sind jedoch für den flächendeckenden Einsatz nicht geeignet. Dies gewährleisten dagegen Energiekennwerte, die rechnerisch ermittelt werden ("Energiebedarfskennwerte" nach VDI 3807). Sie können für jedes Gebäude bestimmt werden – der Einfluss des Nutzers und der klimatischen Schwankungen wird eliminiert. Weiterhin bieten sie den Vorteil, dass an die Berechnung des Ist-Zustands leicht eine Energieberatung mit Bestimmung der Energiesparmöglichkeiten angeschlossen werden kann. Der Nachteil der rechnerischen Ermittlung liegt vor allem im wesentlich größeren Aufwand für die Beschaffung der notwendigen Daten.

Einen dritten Weg bietet die Einordnung eines Gebäudes in eine **Gebäudetypologie**. Hier wird zwar ebenfalls eine Energiebilanz-Berechnung durchgeführt, es müssen jedoch nicht alle Daten des konkreten Objekts erhoben werden. Damit reduziert sich der Aufwand für die Erstellung deutlich. Verbunden ist damit natürlich eine geringere Genauigkeit für den berechneten Energiebedarf.

Alle drei Ansätze besitzen spezifische Vor- und Nachteile – je nach Anwendungsbereich. Sie stellen jeweils wichtige Stufen innerhalb des Energiepass-Konzepts dar (vgl. [WWF 1997]):

	Energiepass-Baustein	Anlass	Aufwand
Stufe 1:	Aufzeichnung Energieverbrauch Erstellung und Aufbewahrung durch den Gebäudeeigentümer	jährlich	10 Minuten (Eigentümer / Nutzer)
Stufe 2:	Einordnung in Gebäudetypologie grobe Klassifizierung mittels Qualitätsraster für Fenster, Außenwand, Dach, Kellerdecke, Art des Heizungssystems und der Warmwasserbereitung	Verkauf, Einstufung im Miet- spiegel	1 Ingenieur- Stunde
Stufe 3:	Energiebilanzberechnung auf der Basis von Planungsdaten	innerhalb der Planung von Neubauten, Erweiterungen und Modernisierungen sowie Vor-Ort-Beratung	4 Ingenieur- Stunden

Tab. 1: Vorschlag für Stufen der Energiekennwert-Bestimmung im Energiepass

Der "Energiepass Stufe 3" muss langfristig Bestandteil eines "Gebäudepasses" oder "Gebäudebriefes" werden. Ähnlich wie in einem KfZ-Brief werden hier die wesentlichen Daten eines Bauwerks dokumentiert (vgl. auch [IÖR 1998]): Pläne (Lageplan, Grundrisse, Ansichten, Schnitte, Regelquerschnitte, Anschlussdetails, Wasser- und Elektroinstallation), bauphysikalische Daten + Hersteller der eingesetzten Materialien, Konstruktionen oder Anlagen.

Durch mehr Transparenz wird ein Anreiz geschaffen, hochwertige Komponenten einzusetzen. Damit wird der langfristigen Bauwerkserhaltung, aber auch den ökologischen Anforderungen Rechnung getragen.

1.2 Kenngrößen im Energiepass

Die rechnerisch ermittelten Energiekennwerte (Energiepass Stufe 2 und 3) erlauben verschiedene Aussagen:

• Verbraucherinformation:

jährlicher Bedarf der eingesetzten (End-)Energieträger

Aus dieser Angabe kann der Endverbraucher direkt die voraussichtlichen Heizkosten ersehen.

• Information über die Umweltwirkung:

Primärenergiebedarf pro m² Wohnfläche und CO2-Emissionen pro m² Wohnfläche

Diese Kennwerte erlauben die ökologische Einordnung und den Vergleich mit Durchschnitts- und Bestwerten

Information über die Qualität von Baukörper und Heizungsanlage:

Heizwärmebedarf pro m² Wohnfläche

und

Primärenergie-Aufwandszahl des Heizsystems

Diese Kennwerte liefern erste Hinweise auf mögliche Schwachstellen. Auch auf dieser Ebene kann jeweils eine Einordnung und ein Vergleich mit Durchschnitts- und Bestwerten erfolgen.

1.3 Klassifizierung

Da Energiekennwerte für Gebäude bisher im Alltag wenig gebräuchlich sind, muss dem Verbraucher eine Einordnung der energetischen Qualität seines Hauses ermöglicht werden. Das dafür erforderliche Bewertungsraster sollte folgenden Anforderungen genügen:

1. Die Qualität muss für den Nicht-Fachmann ohne weitere Erklärungen erkennbar werden.

2. Das Bewertungsraster muss für alle Gebäude gleich sein:

Unterschiedliche Bewertungskategorien für Neu- und Altbauten (zukunftsoffen: alle Neubauten werden irgendwann zu Altbauten) oder für verschiedene Heizsysteme würden die Vergleichbarkeit in Frage stellen.

3. Das Bewertungsraster muss genügend Differenzierungsmöglichkeiten bieten:

Eine Abstufung im Neubau sollte mindestens drei verschiedene Kategorien bieten (Häuser nach EnEV, Niedrigenergiehäuser, Passivhäuser). Ebenso sollte es für Altbauten mindestens 4 Klassen geben, damit auch bei Durchführung von Teilsanierungen eine bessere Einstufung erfolgt.

4. Die Bewertung von teil- oder komplettsanierten Altbauten sollte eine stark positive Ausstrahlung

Beispielsweise besitzt eine 3-Sterne-Klassifizierung ein anderes Image als die Note "3".

In Tab. 4 sind verschiedene Klassifizierungsvarianten und ihre Vor- und Nachteile dargestellt. Auch Kombinationen der Klassifizierungen sind möglich und sinnvoll.

	Abstufung	Anforde- rung 1 (selbst- erklärend)	Anforde- rung 2 (nur 1 Raster)	Anforde- rung 3 (genügend differenziert)	Anforde- rung 4 (Image)
Endenergiekennwert	kontinuierlich	erfüllt	nicht erfüllt	erfüllt	nicht erfüllt
Primärenergiekennwert (vgl. [EPHW 1997])	kontinuierlich	nicht er füllt ¹⁾	erfüllt	erfüllt	nicht erfüllt
Energie-Effizienz-Klassen in Anlehnung an EU-Geräte-Richtlinie	7 Stufen: A B C D E F G	erfüllt	möglich ²⁾	erfüllt	nicht ganz erfüllt
(Energie-Effizienz-)Sterne (vgl. [VZH 1995]	5 Stufen ³⁾ : * ** *** ****	erfüllt	möglich ²⁾	nicht ganz erfüllt ⁴⁾	erfüllt
Noten (vgl. [Heidelberg 1996])	6 Stufen: 1 2 3 4 5 6	erfüllt	möglich ²⁾	nicht ganz erfüllt ⁴⁾	nicht ganz erfüllt
Verbale Benotung	5 Stufen: sehr gut gut mäßig schlecht sehr schlecht	erfüllt	möglich ²⁾	nicht ganz erfüllt ⁴⁾	erfüllt
Verbale Beschreibung (vgl. [Loga/Born 1999])	5 oder mehr Stufen (Beispiel siehe Energie- pass Region Hannover)	erfüllt	möglich ²⁾	nicht ganz erfüllt	erfüllt

erforderlich Referenzwerte zur Einordnung

Tab. 2: Mögliche Bewertungsraster

²⁾ bei Zugrundelegung des Primärenergiebedarfs

auch ***** möglich für Passivhaus-Standard

1.4 Energiekennwerte für verschiedene Berechnungsmodi

Es müssen die in der folgenden Tabelle dargestellten Berechnungsmodi unterschieden werden, die sich jeweils durch ihre Randbedingungen und ihre spezifischen Aussagen unterscheiden. Die Differenzierung in Norm- und Objektkennwert gilt für jede der Bilanzierungsebenen: Nutz-, End- und Primärenergie. Innerhalb der Energieberatung bzw. des Beratungsberichts muss jeweils kenntlich sein, welcher Modus gewählt ist, d.h. welche Aussagen mit welchen Randbedingungen gemacht werden.

Berechnungs modus	"Norm-Kennwert" (mit Norm-Randbeding- ungen nach EnEV)	"Objekt-Kennwert" (mit für das Gebäude typi- schen Randbedingungen)	"Energieberatung" (mit individuellen Randbedingungen)
Klima	Standard-Klimadaten Deutschland (langjähriges Mittel)	regionale (z.B. Bundesländer) oder lokale (z.B. Landkreise oder Städte) Klimadaten (langjähriges Mittel)	lokale Klimadaten einzelner Jahre (oder langjähriges Mittel sofern an witterungs- bereinigte Verbrauchs- kennwerte angepasst wird)
Nutzung	"Norm-Nutzung" (gemäß DIN V 4108-6 Anhang D)	"typische Nutzung", differenziert nach Wärme- schutzstandard und mittlerer Wohnungsgröße des Objekts (siehe Abschnitt 3.2)	"Individuelle Nutzung", so angepasst, dass der Bedarfs- wert mit dem gemessenen Verbrauchswert überein- stimmt (siehe Abschnitt 3.3)
Bezugsfläche	"Gebäudenutzfläche" A _N (= 0,32 x beheiztes Gebäudevolumen)	 reale Flächen: Wohngebäude: beheizte Wohnfläche nach II. BV andere Gebäude: beheizte Nettogrundfläche nach DIN 277 	 reale Flächen: Wohngebäude: beheizte Wohnfläche nach II. BV andere Gebäude: beheizte Nettogrundfläche nach DIN 277
Aussage	Aussage zur energe- tischen Qualität von Gebäuden unter gleichen Randbedingungen	Aussage zum erwarteten Verbrauchswert von Einzelgebäuden bei durchschnittlichem Nutzer sowie von größeren Gebäudegruppen ähnlicher Bauart u. Nutzung	Aussage zur erwarteten Energieeinsparung kon- kreter Gebäude bei Durch- führung von Maßnahmen
Vergleich- barkeit	Kennwerte sind vergleich- bar (auch für unter- schiedliche Standorte)	Kennwerte sind für gleichen Standort und Gebäudetyp vergleichbar	Kennwerte sind nicht vergleichbar
Voraussage des tatsächlichen Energie- verbrauchs	sehr optimistische Aussage zu Heizkosten sowie zur relativen Energieeinsparung	für größere Gebäude- bestände gute Überein- stimmung mit gemessenem Verbrauch und erzielbarer Energieeinsparung; bedingt auch für Einzelgebäude (EFH: nur bei durchschnittlicher Nutz- ung; tend. besser für MFH)	für einzelne Gebäude gute Übereinstimmung mit gemessenem Verbrauch und erzielbarer Energie- einsparung
Anwendung	gesetzlicher Nachweis	Energieberatung für Einzelgebäude; Ausstellung Energiepass; Einordnung im Mietspiegel; Gebäudetypologien, Analyse größerer Gebäudebestände inkl. ökonomischer Betrachtung, Szenarienberechn.	Energieberatung für Einzelgebäude

Tab. 3: Berechnungsmodi für die Bestimmung von Gebäude-Energiekennwerten

1.5 Grob- und Feindiagnose – Abstufung der Präzision in der Energieberatung

Im Rahmen der Vor-Ort-Beratung üblich ist die genaue Erfassung der Gebäudedaten für die energetische Bilanzierung. Die Datenerhebung im Zuge dieser "Feindiagnose" umfasst folgende Punkte:

- Vor-Ort-Bestimmung der Abmessung aller Bauteile und Leitungslängen
- energetische Effizienz aller Gebäudekomponenten (genauer Aufbau, Material + Dicke der Bauteile, ...)

Im Rahmen von Initialberatungen, Energiesparaktionen etc. ist eine Besichtigung des Objekts zu aufwendig und teuer. Es können jedoch auch ohne Vor-Ort-Termin noch sinnvolle Aussagen über energetische Qualität und mögliche Verbesserungen eines Gebäudes gemacht werden, wenn für Bauart und Baualter typische Daten verwendet bzw. verschiedene Vereinfachungen vorgenommen werden:

- Geometrisches Modell für das Gebäude auf der Basis weniger Abmessungen
- Ableitung aller Bauteilflächen und Leitungslängen daraus
- Vernachlässigung oder Pauschalierung kleiner Flächenelemente (z.B. Gauben, Kellerabgänge, ...)
- Pauschalansätze für Kennwerte der Gebäudekomponenten (U-Werte nach Baualter und Gebäudetyp, Leitungsdämmung, Kessel nach Bauart und -alter, Pumpen, ...)

Im folgenden Abschnitt sind Standardannahmen und Vereinfachungen für die Gebäude-Grobdiagnose dargestellt.

2 Standardannahmen und Vereinfachungen für die Gebäude-Grobdiagnose

Basis für die energetische Bilanzierung ist das Rechenmodell für Gebäude und Anlagentechnik gemäß [EPHW 1997]. Sollen im Rahmen von Energie-Kurzberatungen bzw. Initialberatungen nur grobe Aussagen über ein Gebäude gemacht werden, so kann auf eine Ortsbegehung verzichtet werden. Statt konkreter geometrischer, bau- und anlagentechnischer Daten können jeweils pauschalierte Werte verwendet werden, die für ein Gebäude dieser Art und Größe charakteristisch bzw. typisch sind. Bei den nachfolgend vorgeschlagenen Ansätze handelt es sich größtenteils um in der Praxis gewonnene Erfahrungswerte.

Natürlich sind die Berechnungsergebnisse mit größeren Unsicherheiten behaftet, als bei einer Datenaufnahme vor Ort. Sind die realen Daten bekannt, sind diese den Pauschalwerten vorzuziehen. Bei Software-Anwendungen können die Pauschalwerte für die Vorbelegung der entsprechenden Größen herangezogen werden.

2.1 Gebäudegeometrie

Die vereinfachte Bestimmung der Flächen der thermischen Hülle eines Gebäudes basiert auf folgenden Angaben:

- Auswahl einer von mehreren verschiedenen Grundrissformen
- Angabe der entsprechenden Kantenlängen
- Angabe der Zahl der Geschosse und der beheizten Wohnfläche
- · Auswahl einer von mehreren verschiedenen Dachformen
- · Angaben zur Beheizung von Keller- und Dachgeschoss

Kleinere Teilflächen von Vor- und Rücksprüngen, von Dachgauben oder sonstigen An- oder Aufbauten können vernachlässigt werden, sofern der Fehler bei der Flächenerhebung für die jeweilige Bauteilart unter 10% bleibt.

2.2 Bauteil-Konstruktionen

Sind die Bauteil-Konstruktionen nicht bekannt, können Anhaltswerte für die U-Werte der Darstellung regionaler Gebäudetypologien entnommen werden. Die folgenden Beispiele sind der Hessischen Gebäudetypologie [Eicke-Hennig/Siepe 1997] entnommen. Abweichungen müssen kenntlich gemacht werden.

Bild 1: Bauteilkatalog der hessischen Gebäudetypologie (folgende Seiten)

(Zusammenstellung aus: [Eicke-Hennig/Siepe 1997])

Typische Außenwände	typischer Erstellungs zeitraum	U-Wert [W/(m²K)]	Zeichnung
Eichenfachwerk mit Lehmausfachung, innen vollflächig, außen nur Gefache verputzt	vor 1918	1,90	Section of the sectio
Eichenfachwerk mit Feldsteinausmauerung, innen verputzt	vor 1918	2,48	
Eichenfachwerk mit Lehmausfachung, innen verputzt, außen verschindelt	vor 1918	1,90	Andrew Control of the
Vollziegelmauerwerk 38 cm	vor 1948	1,70	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
Vollziegelmauerwerk 38-51 cm	vor 1948	1,38	100. 100 100 100 100 100 100 100 100 100
Zweischaliges Ziegelmauerwerk 2*12 cm mit 6 cm Lufschicht	vor 1948	1,64	
Zigelsplitt- oder Bimshohlblocksteine, verputzt	1949-1957	1,44	
Bimsvollsteine, verputzt	1949-1957	0,93	
Gitterziegel 24 cm stark, verputzt	1949-1978	1,21	
Gitterziegel 36 cm stark, verputzt	1949-1978	1,02	

Typische Steildächer	typischer Erstellungs zeitraum	U-Wert [W/(m²K)]	Zeichnung
Putz auf Spalierlatten	bis 1948	3,08	
Bimsvollsteine zwischen den Sparren, verputzt	1949-1957	1,41	
Heraklithplatten unter den Sparren, verputzt	1958-1978	1,11	
Steildach, 4 cm Dämmung zwischen den Sparren	1958-1968	0,79	
Steildach, 6 cm Dämmung zwischen den Sparren	1969-1978	0,51	

Typische Geschossdecken und Flachdächer	typischer Erstellungs zeitraum	U-Wert [W/(m²K)]	Zeichnung
Holzbalkendecke mit Strohlehmwickel, oberseitig Dielung (Eiche oder Fichte), unterseitig verputzt	bis 1918	1,04	
Holzbalkendecke mit Blindboden und Lehmschlag, 2-3 cm Schlackenschüttung, oberseitig Dielung, unterseitig Putz auf Spalierlatten	bis 1918	0,78	
Holzbalkendecke mit Strohlehmwickel, oberseitig Dielung (Eiche oder Fichte), unterseitig Putz auf Spalierlatten	bis 1918	1,03	
Holzbalkendecke mit Blindboden, oberseitig Dielung, unterseitig Putz auf Spalierlatten	bis 1918	0,78	
Stahlsteindecke mit Gußasphaltestrich	1949-1957	2,08	
Stahlbetondecke 15 cm ohne Dämmung	1958-1968	2,25	
Stahlsteindecke mit 1 cm Dämmung, schwimmender Estrich	1958-1968	1,37	
Stahlbetonflachdach 20cm mit 16cm Luftschicht	1958-1968	1,68	5 5 5 5 5 5 5
Flachdach, 15 cm Stahlbetondecke + 2 cm WD + Dachhaut	1969-1978	1,23	
Flachdach, 15 cm Stahlbetondecke + 6 cm Schaumglas + Dachhaut + Kiesschüttung	1969-1978	0,63	

Typische Kellerdecken und EG-Fußböden	typischer Erstellungs zeitraum	U-Wert [W/(m²K)]	Zeichnung
Holzbalkendecke mit Strohlehmwickel, unterseitig verputzt	bis 1918	1,04	
Feldsteine, in Sand (nicht unterkellert)	bis 1918	2,88	
Holzbalkendecke auf Blindboden mit Lehmschlag, oberseitig Dielung	bis 1918	0,91	
gemauertes Kappengewölbe, oberseitig Sandschüttung, Dielung auf Lagerhölzern	bis 1918	1,37	
scheitrechte Kappendecke, oberseitig Sandschüttung, Dielung auf Lagerhölzern	1918-1948	1,11	
12 cm Stahlbetondecke, oberseitig 6-8 cm Schlackenschüttung + Dielung auf Lagerhölzern	1949-1957	1,01	
Stahlbetondecke mit Estrich	1949-1957	2,40	
12-16 cm Stahlbetondecke, 2-3 cm Trittschaldämmung aus Polystyrol, 4 cm Estrich	1958-1978	0,84	//9//9//9//9//9//9//9//9//9//9//9//9//9
Stahlsteindecke mit Gußasphaltestrich	1958-1978	2,08	

2.3 Fenster

Folgende Pauschalwerte können für die U- und g-Werte von Fenstern verwendet werden. Die Werte gelten für eine Fenstergröße zwischen 1 und 2 m² und beinhalten die Wärmebrückenverluste eines Aluminium-Randverbunds und des angegebenen Rahmens. Differenzierte Angaben finden sich in Abschnitt 4. Aufgrund des geänderten Normenwerkes dürfen die Tab. 1-1 und 1-2 in [EPHW 1997] nicht mehr verwendet werden.

Bauart Fenster und Verglasung	Verglasung U _g [W/(m²K)]	Gesamt-Fenster* U _w [W/(m²K)]	g-Wert	
Holzfenster Bestand	Einfach-Verglasung 5,8	5,0	0,86	
Aluminium-Fenster Bestand (Alu-Rahmen ohne thermische Trennung)		4,3		
Aluminium-Fenster neu (Alu-Rahmen mit thermischer Trennung)	2-Scheiben- Isolierverglasung	3,2	0.70	
Kunststofffenster	2,8	3,0	0,76	
Holzfenster oder Holz-Verbundfenster mit 2 Scheiben		2,7		
Kunststofffenster	2-Scheiben- Wärmeschutz-	1,9	0,60	
Holzfenster	Verglasung 1,1	1,6	0,00	
Holzfenster (U _f ≤ 1,5 W/(m²K))	3-Scheiben- Wärmeschutz-	1,2	0.50	
Passivhaus-Fenster (U _f ≤ 0,8 W/(m²K))	Verglasung 0,7	0,9	0,50	

^{*)} inkl. Rahmen + Randverbund, ohne Einbau, bei Glasanteil 60% der Fensterfläche

Tab. 4: Anhaltswerte für den Wärmedurchgangskoeffizienten von Fenstern mittlerer Größe (Glasanteil ca. 60% der Fensterfläche) inkl. Wärmeverluste für Rahmen und Randverbund (Alu) ohne Einbau (genauere Werte und Zuschläge für Einbau siehe Tab. 18 bis Tab. 20)

Für die Berechnung der solaren Wärmegewinne wird darüber hinaus der Glasanteil der Fensterfläche benötigt. Ist dieser nicht bekannt, kann ein Pauschalwert von 60% verwendet werden.

2.4 Geometrische Grunddaten für die Abschätzung von Leitungslängen

Die Abschätzung erfolgt größtenteils unter Rückgriff auf die geometrischen Daten des Gebäudes:

a,b Gebäudebreite und -länge (bei rechteckigem Grundriss) [m]

c,d,e,f,g,h,... Kantenlängen zusätzlicher Grundriss-Teilflächen [m]

L_{char} charakteristische Gebäudelänge [m]

*h*_R lichte Raumhöhe [m]

*h*_G Geschosshöhe [m]

 n_{VG} Anzahl Vollgeschosse (zuzügl. 0,5 bei ausgebautem Dachgeschoss oder Keller)

*n*_{WE} Anzahl Wohneinheiten

A_{EB} Energiebezugsfläche (vgl. Definition in Abschnitt 4.1) [m²]

A_G Grundfläche des Gebäudes (entspricht Boden gegen Keller oder Erdreich in Gleichung

(1-3)) [m²]

Für rechteckige Gebäudegrundrisse ist L_{char} gleich der Gebäudekante b.

Komplexere Gebäudegrundrisse mit rechtwinklig angeordneten Gebäudekanten setzen sich zusammen aus dem größten Rechteck mit den Kantenlängen a und b und weiteren Rechtecken mit den Kantenlängen c und d, e und f, g und h etc., wobei d, f, h etc. als die längere der beiden Kanten definiert ist. Die charakteristische Gebäudelänge ist dann:

$$L_{Char} = b + d + f + h + \dots$$
 [m]

Ist die Länge der Gebäudekanten nicht bekannt, kann diese überschlägig wie folgt geschätzt werden:

$$L_{char} = \frac{A_G}{a} \quad [m]$$

$$a = 10 \text{ m}$$

Weitere Pauschalwerte sind:

$$h_R = 2.5 \text{ m}$$

$$h_{\rm G} = 2.8 \, {\rm m}$$

2.5 Heizwärme-Verteilung

2.5.1 Wärmeverluste

Die längenspezifischen Wärmeverluste in [EPHW 1997] Tab. 2-1 wurden auf der Grundlage der DIN 4701-10 neu berechnet. Tab. 5 zeigt die Ergebnisse in Abhängigkeit von Netzauslegungstemperatur und Nachtabsenkung. In Anlehnung an [EPHW 1997] erfolgt die Darstellung differenziert nach der Qualität der Rohrleitungsdämmung (und dem Rohrdurchmesser im Falle der ungedämmten Leitung).

Um die Berücksichtigung verschieden langer Heizzeiten zu ermöglichen, werden die Verluste jetzt als über die Heizzeit gemittelte Leistung angegeben. Die nach dem Rechenverfahren der DIN V 4701-10 bestimmte mittlere Leistung hängt geringfügig von der angesetzten Heizgrenze bzw. Heizzeit ab, daher sind die in der Tabelle angegebenen Werte exakt nur für die verwendete Heizgrenze gültig. Die während der Heizzeit auftretenden Wärmeverluste können jedoch mit genügend großer Genauigkeit aus dem Produkt der mittleren Leistung und der Länge der Heizzeit bestimmt werden.

Ist die Stärke der Rohrleitungsdämmung nicht bekannt, so kann der Standard "mäßig" als vorhanden angenommen werden. Bei Gebäuden ab Baujahr 1977 kann mit einem Dämmstandard nach "HeizAnlV" gerechnet werden. Wenn die Auslegungstemperatur des Heizsystems nicht bekannt ist, kann als Standardfall das Auslegungstemperaturpaar 70°C/55°C, im Fall von Flächenheizungen 55°C/45°C angesetzt werden.

EnEV-Nachweis

Die dunkel hinterlegte Spalte in Tab. 5 gibt die Werte wieder, die im Fall des EnEV-Nachweises im Neubau zu verwenden sind.

Heizwärme-Verteilung Mittlere Wärmeverlustleistung pro m Rohrlänge in W/m Werte für EPHW und EnEV-Nachweis

		Leitungen außerhalb der thermischen Hülle** Qualität Rohrleitungsdämmung						EnE	EV-Nachv	veis	
Netz- auslegungs-			ungedämmt mäßig EnEV " _{doppelte} EnEV" HeizAnIV				außer- halb	inne	rhalb		
temperaturen					Rohrd	urchmesse	r		der th	ermischen	Hülle
Vorlauf/Rücklauf		<18 mm			>64 bis 108 mm		18 bis 108 mm	*	zirku- lierend	zirku- lierend	absperr- bar
35/28 °C	nt- ng	6,7	12	19	30	3,8	2,6	1,8	2,7	0,24	0,13
55/45 °C	Nacht- ialtung	18	31	53	85	7,0	4,8	3,4	5,0	0,70	0,37
70/55 °C	ohne Nacht- abschaltung	27	49	83	134	9,1	6,3	4,4	6,5	0,98	0,53
90/70 °C	oh ab	44	79	137	222	12,0	8,3	5,9	8,7	1,39	0,74
35/28 °C	÷ Jg	4,7	8,3	14	22	2,7	1,8	1,3	1,9	0,17	0,09
55/45 °C	acht	13	22	38	60	5,0	3,4	2,4	3,6	0,49	0,26
70/55 °C	mit Nacht- abschaltung	19	34	59	95	6,4	4,4	3,1	4,6	0,70	0,37
90/70 °C	n ab	31	56	97	157	8,5	5,9	4,1	6,1	0,98	0,53

Berechnungen nach DIN V 4701 -10 / Zwischenwerte können interpoliert werden.

Erläuterungen

mäßig = gegenüber EnEV halbierte Dämmstärke (Bestandsanlagen: bis zu 2 cm Glaswolle, mehrere Lagen Filzband und Gipsmanschette) EnEV = Dämmstärke entspricht der Mindestanforderung der EnEV Art der Dämmung:

"doppelte EnEV" = gegenüber EnEV verdoppelte Dämmstärke EnEV-Nachweis = Dämmstärke und Randbedingungen für Berechnung nach EnEV allgemein: Kellertemperatur 13°C / Nachtabschaltung 0 bzw. 7 h/d

Randbedingungen

für Berechnung EPHW: Raumtemperatur 20°C / Heizgrenze 12°C / Heizzeit 225 d/a / Rohrleitungsverluste innerhalb der thermischen Hülle werden vernachlässigt EnEV-Nachweis: Raumtemperatur 19°C / Heizzeit 185 d/a

Tab. 5: Längenbezogene Wärmeverluste der Heizwärmeverteilung

Bei gedämmten Leitungen mit Rohr-Durchmesser < 18 mm können die Werte um 30% reduziert werden.

^{**)} Die Wärmeverluste von Rohrleitungen innerhalb der thermischen Hülle werden vernachlässigt.

2.5.2 Leitungslängen

Die für Gleichung (2-5) in [EPHW 1997] benötigte Länge der Heizwärmeverteilung im unbeheizten Bereich L_H (Vor- und Rücklauf) kann wie folgt abgeschätzt werden:

a) horizontale Verteilung vollständig im unbeheizten Bereich (z.B. unter der Kellerdecke oder im Erdreich):

$$L_{H,V} = 2 \cdot (2a + L_{char})$$
 [m]

b) horizontale Verteilung teilweise im unbeheizten Bereich:

$$L_{H,V} = 2 \cdot (a + 0.5 L_{char})$$
 [m]

c) horizontale Verteilung überwiegend im beheizten Bereich (z.B. oberhalb der Kellerdecke, entlang der Sockelleisten etc.) / Standort Wärmeerzeuger im unbeheizten Bereich:

$$L_{H,V} = 4$$
 [m]

Im Falle eines im beheizten Bereich installierten Wärmeerzeugers ist $L_{H,V} = 0$ m.

Die Wärmeverluste der innerhalb der thermischen Hülle liegenden Strang- und Anbindeleitungen werden im EPHW-Ansatz vernachlässigt.

Tab. 6 gibt die Werte in Abhängigkeit von der Gebäudelänge und der Gebäudegrundfläche wieder.

Heizwärmeverteilung Leitungslängen in m Werte für EPHW								
Charakte-	Charakte- horizontale Verteilung L _V							
ristische Gebäude-	Gebäude- grundfläche	außerhalb	teilweise innerhalb	innerhalb*				
länge L _{char}		der thermischen Hülle						
5 m	50 m²	50	25	4				
10 m	100 m²	60	30	4				
15 m	150 m²	70	35	4				
20 m	200 m²	80	40	4				
25 m	250 m²	90	45	4				
30 m	300 m²	100	50	4				
40 m	400 m²	120	60	4				
50 m	500 m²	140	70	4				
60 m	600 m²	160	80	4				
70 m	700 m²	180	90	4				
80 m	800 m²	200	100	4				
90 m	900 m²	220	110	4				
100 m	1000 m²	240	120	4				

Zwischenwerte können linear interpoliert werden

*) Im Falle eines im beheizten Bereich installierten Wärmeerzeugers ist die Länge = 0 m

Tab. 6: Leitungslängen der Heizwärmeverteilung in Abhängigkeit von der Gebäudelänge und - grundfläche (Vor- und Rücklauf)

EnEV-Nachweis

Für den EnEV-Nachweis wurden die entsprechenden Leitungslängen bestimmt (Tab. 7). Diese berücksichtigen die durch die DIN V 4701-10 vorgegebenen verschiedenen Teilstränge. Wird für jeden Teilstrang das Produkt aus den angegebenen Leitungslängen, dem jeweiligen Wert des längenspezifischen Verlustes (Tab. 5) und der Betriebszeit (DIN V 4701-10: 350 d/a) gebildet, so entspricht die Summe exakt den A_N-abhängigen Tabellenwerte der DIN V 4701-10 Anhang C.

Zum Vergleich sind die EPHW-Werte aus Tab. 6 noch einmal mit aufgeführt. Um eine Darstellung in Abhängigkeit von A_N zu ermöglichen, wird nach der Zahl der Vollgeschosse unterschieden.

Heizwärmeverteilung
Leitungslängen in m
Vergleich der Werte nach EPHW und DIN 4701-10 (EnEV-Nachweis)

		Länge horizontale Leitungen L _V						Länge Strang- leitungen L _s	Länge Anbinde- leitungen L _A	
"Gebäude- nutz-	beheizte Wohn-	Anz	ahl Vol	lgesch	osse	innerhalb thermischer Hülle*	wischer stränge		EnEV-Nachweis	
fläche" A _N	fläche	1	2	4	8	inn ther F	außen- liegend	innen- liegend		
100 m²	80 m²	63	52			4	34	30	8	55
150 m²	120 m²	75	57			4	36	31	11	83
200 m ²	160 m²	86	63	52		4	39	33	15	110
300 m ²	240 m²	109	75	57		4	44	35	23	165
500 m ²	400 m²		98	69	54	4	54	40	38	275
750 m²	600 m²		127	83	62	4	66	46	56	413
1000 m²	800 m²		156	98	69	4	79	53	75	550
1500 m²	1200 m²			127	83	4	104	65	113	825
2500 m²	2000 m²			185	112	4	154	90	188	1375
5000 m²	4000 m²			329	185	4	279	153	375	2750
10000 m²	8000 m²			619	329	4	529	278	750	5500

Zwischenwerte können linear interpoliert werden

EPHW: Strangleitungen und Anbindeleitungen innerhalb der thermischen Hülle werden vernachlässigt.

Bei teilweise innerhalb der thermischen Hülle verlegten horizontalen Leitungen halbieren sich die Werte.

*) Pauschalwert berücksichtigt Anbindeleitung Kessel <-> horiz. Vert. / Im Falle eines im beheizten Bereich installierten Wärmeerzeugers ist die Länge = 0 n

Tab. 7: Leitungslängen der Heizwärme-Verteilung in Abhängigkeit von der "Gebäudenutzfläche" A_N bzw. beheizter Wohnfläche

2.6 Trinkwarmwasser-Verteilung

2.6.1 Wärmeverluste

Die längenspezifischen Wärmeverluste in [EPHW 1997] Tab. 2-9 und 2-10 wurden auf der Grundlage der DIN 4701-10 neu berechnet. Tab. 8 zeigt die Ergebnisse für Zirkulationsleitungen in Abhängigkeit von der Betriebszeit der Zirkulation und für Leitungen ohne Zirkulation. In Anlehnung an [EPHW 1997] erfolgt die Darstellung differenziert nach der Qualität der Rohrleitungsdämmung (und dem Rohrdurchmesser im Fall der ungedämmten Leitung) für eine Umgebungstemperatur von 20°C.

Da in der neuen DIN V 4701-10 die Rohr-Temperatur mit 50°C gegenüber [EPHW 1997] mit 60°C deutlich niedriger angesetzt ist, liegen die Wärmeverluste der Zirkulation etwa um 25 % niedriger als in [EPHW 1997]. Die Unterschiede bei den Leitungen ohne Zirkulation ergeben sich aus dem anderen Berechnungsansatz (statischer Ansatz in DIN V 4701-10: mittlere Rohrtemperatur 32°C; quasi-dynamischer Ansatz in [EPHW 1997]: Erwärmvorgänge gemäß [LEG]). Da die Unterschiede sich in der Gesamtbilanz kaum bemerkbar machen, werden jetzt zur Vereinheitlichung auch für die Berechnungen nach dem Energiepass Heizung/Warmwasser die entsprechenden Ansätze der DIN V 4701-10 verwendet. Allerdings wird bezüglich der Betriebszeit der Zirkulation weiterhin im Standardfall nur zwischen Einfamilien- bzw. Reihenhaus (18 h/d) und Mehrfamilienhaus (24 h/d) unterschieden.

Ist die Stärke der Rohrleitungsdämmung nicht bekannt, so kann der Standard "mäßig" als vorhanden angenommen werden. Bei Gebäuden ab Baujahr 1977 kann mit einem Dämmstandard nach "HeizAnIV" gerechnet werden.

EnEV-Nachweis

Die dunkel hinterlegte Spalte in Tab. 8 gibt die Werte wieder, die im Fall des EnEV-Nachweises im Neubau zu verwenden sind. Die Wärmeverluste pro m Rohrlänge basieren hier auf den Standardvorgaben für Rohrleitungen bei einer Umgebungstemperatur von 20°C bzw. 13°C. Die Dauer der Zirkulationsunterbrechung hängt von A_N ab. Die Verknüpfung mit den tabellierten Leitungslängen (Tab. 10) erlaubt eine EnEV-konforme Berechnung für alle in der DIN V 4701-10 verwendeten Teilstränge außer- und innerhalb der thermischen Hülle.

Warmwasser-Verteilung Mittlere Wärmeverlustleistung pro m Rohrlänge in W/m Werte für EPHW und EnEV-Nachweis

	Qualität Rohrleitungsdämmung									
		unged	dämmt		mäßig	EnEV (bzw. HeizAnIV)	"doppelte EnEV"	"Gebäude- nutzfläche"	EnEV-N	achweis
				Ro	hrdurchmess	er		A_N	außerhalb	innerhalb
	<u><</u> 18 mm			>64 bis 108 mm		18 bis 108 mm*			der thermis	schen Hülle
ohne Zirkulation**	6	11			3,5	2,4	1,7	-	3,8	2,4
mit Zirkulation Betriebszeit: 6 h/d 12 h/d 18 h/d (Standardwert EFH) 24 h/d (Standardwert MFH)	10 16 21 26	19 28 37 47	32 48 64 80	51 77 103 128	3,5 5,2 6,9 8,7	2,4 3,6 4,8 6,0	1,7 2,5 3,4 4,2	100 m² 150 m² 200 m² 300 m² 500 m² 750 m² 1000 m² 1500 m² 2500 m² 5000 m²	4,6 4,8 4,9 5,2 5,5 5,9 6,1 6,4 6,7 7,1	3,5 3,7 3,8 4,0 4,4 4,7 4,9 5,1 5,4 5,7 5,9

Bei innerhalb der thermischen Hülle angeordneten Leitungen können 85% der Verluste in der Heizzeit als Heizwärmebeitrag genutzt werden ("Heizwärme-Gutschrift")

*) bei gedämmten Leitungen mit Rohr-Durchmesser < 18 mm können die Werte um 30% reduziert werden.

*) Versorgungsleitungen ohne Zirkulation und Stichleitungen; vereinfacht berechnet für eine mittlere Leitungstemperatur von 32°C (gemäß DIN V 4701-10)

Erläuterungen

mäßig = gegenüber EnEV halbierte Dämmstärke (Bestandsanlagen: bis zu 2 cm Glaswolle, mehrere Lagen Filzband und Gipsmanschette)
EnEV = Dämmstärke entspricht der Mindestanforderung der EnEV
"doppelte EnEV" = gegenüber EnEV verdoppelte Dämmstärke Art der Dämmung:

 ${\it EnEV-Nachweis = D\"{a}mmst\"{a}rke\ und\ Randbedingungen\ f\"{u}r\ Berechnung\ nach\ EnEV}$

Randbedingungen allgemein: TWW-Temperatur 50°C; während Zirkulationsunterbrechung: halbe Länge und Rohrtemperatur 32°C für Berechnung EPHW: Umgebungstemperatur 20°C (vereinfachend auch für Rohrleitungen außerhalb der thermischen Hülle)

EnEV-Nachweis: Umgebungstemperatur 13°C/20°C (innerhalb/außerhalb der thermischen Hülle); tägl. Betriebszeit abh. von A

Tab. 8: Längenbezogene Wärmeverluste der Warmwasserverteilung

2.6.2 Leitungslängen

Die für EPHW-Gleichung (2-19) benötigte Länge der Zirkulations- und Förderleitung L_Z (Vor- und Rücklauf) kann wie folgt abgeschätzt werden:

TWW-Netze mit Zirkulation

Horizontale Verteilung (Bereich V nach DIN V 4701-10):

für $L_{char} \le 12 \text{ m}$: $L_{TWW,V} = 4 \text{ [m]}$

für L_{char} > 12 m: $L_{TWW,V} = 2 \cdot (L_{char} - 10)$ [m]

Strangleitungen (vertikal und ggf. auch horizontal; Bereich S nach DIN V 4701-10):

$$L_{TWW,S} = 2 \cdot (n_{WE} + 1) \cdot h_G$$
 [m]

Stichleitungen (Anbindeleitungen; Bereich SL nach DIN V 4701-10)

$$L_{TWW SL} = 0.5 \cdot a \cdot n_{WE}$$
 [m]

TWW-Netze ohne Zirkulation

Horizontale Verteilung (Bereich V nach DIN V 4701-10):

für $L_{char} \le 12 \text{ m}$: $L_{TWW,V} = 2$ [m]

für L_{char} > 12 m: $L_{TWW,V} = L_{char} - 10$ [m]

Strangleitungen (vertikal und ggf. auch horizontal; Bereich S nach DIN V 4701-10):

$$L_{TWW.S} = (n_{WE} + 1) \cdot h_G$$
 [m]

Stichleitungen (Anbindeleitungen; Bereich SL nach DIN V 4701-10)

$$L_{TWW,SL} = 0.5 \cdot a \cdot n_{WE}$$
 [m]

Heizwärme-Gutschrift

Bei innerhalb der thermischen Hülle angeordneten Warmwasserleitungen kann in der Heizzeit ein Teil der Verluste als Heizwärmebeitrag genutzt werden ("Heizwärme-Gutschrift"). Die korrekte Berechnung ist in Abschnitt 2.9 beschrieben.

EnEV-Nachweis

Für den EnEV-Nachweis wurden die Leitungslängen der Teilstränge bestimmt (Tab. 10). Wird für jeden Teilstrang das Produkt aus den angegebenen Leitungslängen, dem jeweiligen Wert des längenspezifischen Verlustes (Tab. 8) und der Länge der Heizzeit (DIN V 4701-10: 185 d/a) gebildet, so entspricht die Summe exakt den A_N-abhängigen Tabellenwerte der DIN V 4701-10 Anhang C.

Zum Vergleich sind die EPHW-Werte aus Tab. 9 noch einmal mit aufgeführt. Um eine Darstellung in Abhängigkeit von A_N zu ermöglichen, wird nach der Zahl der Vollgeschosse, nach der gesamten Wohnfläche und nach der Wohnfläche pro Wohnung unterschieden.

Warmwasser-Verteilung Leitungslängen in m Werte für EPHW									
Charakteristische Gebäudelänge L _{char}	5 m	10 m	15 m	20 m	30 m	40 m	50 m	75 m	100 m
Grundfläche Erdgeschoss	50 m²	100 m²	150 m²	200 m ²	300 m²	400 m²	500 m ²	750 m²	1000 m²
Länge horizontale Verteilung mit Zirkulation* L _V (innerhalb oder außerhalb der thermischen Hülle)	4	4	10	20	40	60	80	130	180
Anzahl Wohneinheiten	1	2	3	4	5	10	20	50	100
Länge Strangleitungen mit Zirkulation* L _S (innerhalb der thermischen Hülle)	11	17	22	28	34	62	118	286	566
änge Stichleitungen L _{SL} innerhalb der thermischen Hülle) 5,0 10 15 20 25 50 100 250 500									
vischenwerte können linear interpoliert werden. Länge Rohrleitung inkl. Zirkulationsrückleitung. Bei Netzen ohne Zirkulation halbiert sich die jeweilige Länge.									

Tab. 9: Leitungslängen für die verschiedenen Stränge der TWW-Verteilung in Abhängigkeit von der Gebäudelänge bzw. der Anzahl der Wohneinheiten

	Warmwasser-Verteilung Leitungslängen in m Vergleich der Werte nach EPHW und DIN 4701-10 (EnEV-Nachweis)														
	Gebäude-	beheizte	Lär	nge hor	izontale	e Leitun	igen L _v		-	e Strang ngen L _s	-	Län	Länge Stichleitungen L _{SL}		
	nutz-fläche A _N	Wohn- fläche	Ana	zahl Vol	lgescho	sse	EnEV- Nach-		hnfläche Wohnun		EnEV- Nach-		hnfläche Wohnun		EnEV- Nach-
			1	2	4	8	weis	80 m²	120 m²	160 m²	weis	80 m²	120 m ²	160 m²	weis
	100 m²	80 m²	4,0	4,0			28	11,2			7,5	5,0			7,5
	150 m²	120 m²	13,5	4,0			29	14,0	11,2		11	7,5	5,0		11
	200 m²	160 m²	25	4,0	4,0		30	17	13,1	11,2	15	10	6,7	5,0	15
Ę	300 m²	240 m²	47	13,5	4,0		32	22	17	14,0	23	15	10	7,5	23
mit Zirkulation	500 m²	400 m²		36	7,9	4,0	36	34	24	20	38	25	17	13	38
ž	750 m²	600 m²		64	22	4,0	41	48	34	27	56	38	25	19	56
it Zi	1.000 m²	800 m²		92	36	7,9	46	62	43	34	75	50	33	25	75
Ε	1.500 m²	1.200 m ²			64	22	56	90	62	48	113	75	50	38	113
	2.500 m²	2.000 m ²			120	50	76	146	99	76	188	125	83	63	188
	5.000 m²	4.000 m ²			259	120	126	286	192	146	375	250	167	125	375
	10.000 m²	8.000 m ²			538	259	226	566	379	286	750	500	333	250	750
ou	100 m²	80 m²	2,0	2,0			14	5,6			3,8	5,0			8
ılati	150 m²	120 m²	6,7	2,0			15	7,0	5,6		5,7	7,5	5,0		11
Zirkulation	200 m²	160 m²	12,3	2,0	2,0		15	8,4	6,5	5,6	7,6	10	6,7	5,0	15
Te Z	300 m²	240 m²	23	6,7	2,0		16	11,2	8,4	7,0	11	15	10	7,5	23
ohne	500 m²	400 m²		18	4,0	2,0	18	17	12,1	9,8	19	25	17	13	38
Zwischen	werte können lin	ear interpoliert	werden												

Tab. 10: Leitungslängen der TWW-Verteilung in Abhängigkeit von der "Gebäudenutzfläche" A_N bzw. beheizter Wohnfläche

2.7 Trinkwarmwasser-Speicherung

Tab. 2-11 in [EPHW 1997] stellt Wärmeverluste von TWW-Speichern für verschiedene Dämmstärken sowie die Grenzwerte der DIN 4753-8 dar. Sind in bestehenden Anlagen keine Angaben für den Speicher verfügbar so kann der Dämmstandard als "schlecht" angesetzt werden.

Für neue Speicher können die nach DIN V 4701-10 berechneten Werte verwendet werden (Tab. 11).

EnEV-Nachweis

Der dunkel hinterlegte Bereich in Tab. 11 gibt die Werte wieder, die im Fall des EnEV-Nachweises im Neubau zu verwenden sind. Die Wärmeverluste basieren hier auf den Standardvorgaben der DIN V 4701-10 mit A_N -abhängigen Speichervolumina bei einer Umgebungstemperatur von 20°C. Die Multiplikation der Speicherverluste mit einer Betriebszeit von 350 d/a (DIN V 4701-10 Tab. 5-2) erlaubt eine EnEV-konforme Berechnung der jährlichen Wärmeverluste.

Warmwasser-Speicherung
Wärmeverluste in W auf der Grundlage der DIN 4701-10
Werte für EnEV-Nachweis

		indirekt beheizter Speicher	Elektro- Nachtspeicher	Elektro- Tages- speicher	1 Elektro- Kleinspeicher je 80 m²	Bivalenter Solarspeicher	Gasbeheizter Trinkwasser- speicher
		außerhalb der thermischen Hülle	außerhalb der thermischen Hülle	außerhalb der thermischen Hülle	innerhalb der thermischen Hülle	außerhalb der thermischen Hülle	außerhalb der thermischen Hülle
пé	5 Liter				12		
me	80 Liter	64	36	36			237
<u>ا</u>	120 Liter	72	45	45			326
Ž	200 Liter	85	62	62		{ wird noch	514
che	300 Liter	97	82	82		nachgetragen }	759
Speichervolumen	500 Liter	115	118	118		0 0 ,	1272
S	1000 Liter	147	197	197			
	100 m²	78	65	41	15	51	282
₹	150 m²	85	79	48	22	55	357
-e	200 m²	91	91	55	29	57	426
ich	300 m²	100	111	66	44	61	554
zflë	500 m²	112	144	84	73	65	784
I t	750 m²	124	178	103	109	71	1043
"Gebäudenutzfläche"	1.000 m ²	133	207	118	145	71	1279
äu	1.500 m ²	231	257	146	218	89	1691
eb	2.500 m ²	261	339	190	363	89	2430
9	5.000 m ²	403	494	275	727	119	3930
	10.000 m ²	576	723	401	1454	119	6393

Berechnung nach DIN V 4701-10 / Zwischenwerte können linear interpoliert werden.

Bei innerhalb der thermischen Hülle aufgestellten Speichern

Randbedingungen für die Berechnung: Umgebungstemperatur 20°C bzw. 13°C (innerhalb bzw. außerhalb der thermischen Hülle); TWW-Temperatur 50°C für indirekt beheizten Speicher bzw. 55°C sonst

Tab. 11: Wärmeverluste von TWW-Speichern in Abhängigkeit vom Speichervolumen und von A_N

⁻ reduziert sich die Verlustleistung gegenüber der Aufstellung außerhalb der thermischen Hülle um 19%;

können 85% der Verluste in der Heizzeit als Heizwärmebeitrag genutzt werden ("Heizwärme-Gutschrift").

Heizwärme-Gutschrift

Bei innerhalb der thermischen Hülle angeordneten Warmwasserleitungen kann in der Heizzeit ein Teil der Verluste als Heizwärmebeitrag genutzt werden ("Heizwärme-Gutschrift"). Die korrekte Berechnung ist in Abschnitt 2.9 beschrieben.

2.8 Wärmeerzeugung

2.8.1 Kessel und andere Wärmeerzeuger

Für Neuanlagen können alternativ zu den Werten aus [EPHW 1997] die Aufwandszahlen der DIN V 4701-10 verwendet werden. Die Aufwandszahl ist identisch mit dem Kehrwert des Jahresnutzungsgrades.

2.8.2 Thermische Solaranlagen

Thermische Solaranlagen können in Anlehnung an den Ansatz in DIN V 4701-10 als Anlagen zur Wärmeerzeugung betrachtet werden. Für die Bestimmung des Deckungsanteils können alternativ die Werte nach [EPHW 1997] Tab. 2-15 oder DIN V 4701-10 Tab. C.1-4a verwendet werden.

Für einfache Abschätzungen ist auch die Verwendung eines pauschalen Deckungsanteils von 50% möglich. Voraussetzung hierfür ist, dass der Solarspeicher ein Volumen von mindestens 50 Liter pro Bewohner aufweist und die Kollektorfläche bei Einfamilienhäusern 1 m² und bei Mehrfamilienhäusern 0,75 m² pro Bewohner nicht unterschreitet.

2.9 Nutzbarkeit der Wärmeverluste – Heizwärmegutschrift

Komponenten der Warmwasserbereitung innerhalb der thermischen Hülle

Im Standardverfahren des [EPHW 1997] werden die Wärmeverluste der Warmwasserbereitung in und außerhalb der Heizzeit gleich hoch angesetzt. Die als innere Wärmequelle verfügbare Wärmeleistung wird in Form eines flächenbezogenen Pauschalwertes berücksichtigt, dem der typische Fall einer zentralen Warmwasserbereitung zu Grunde liegt (EFH: 0,69 W/m²; MFH: 0,88 W/m²). Dieses Verfahren dient einer groben Abschätzung und reicht für Standardberechnungen aus.

Für genauere Untersuchungen (insbesondere energetische Optimierung von Heiz- und Warmwassersystemen) müssen die Wärmeverluste der genannten Komponenten für die Heizzeit exakt bestimmt und als innere Wärmegewinne in der Berechnung des Heizwärmebedarfs angesetzt werden.

Alternativ kann auch das durch DIN V 4701-10 eingeführte Verfahren verwendet werden. Dieses setzt den Ausnutzungsgrad für die Wärmeverluste pauschal auf 85% und zieht die damit ermittelten nutzbaren Wärmeverluste von dem berechneten Heizwärmebedarf ab.

In beiden Fällen ist jedoch nur der Differenzbetrag zum oben genannten pauschalen Beitrag zu den inneren Wärmequellen (EFH: 0,69 W/m²; MFH: 0,88 W/m²) zu berücksichtigen.

Heizwärmeverteilung innerhalb der thermischen Hülle

Bei innerhalb der thermischen Hülle verlegten Rohrleitungen der Heizwärmeverteilung entstehen grundsätzlich folgende Wärmeverluste:

- ungeregelte Wärmeabgabe der Verteilleitungen: In der DIN V 4701-10 werden die Verluste zu 10% (Bereich A) bzw. 15 % (Bereich S) als nicht nutzbar angesetzt.
 - Diesen Pauschalwert halten wir allerdings für zu hoch, da im Zeitverlauf (im Falle einer witterungsgeführten Regelung) über die Heizperiode die für die Verluste maßgebliche hohe Netztemperatur (bei tiefen Außentemperaturen) mit einem deutlich höheren Ausnutzungsgrad für zusätzliche Gewinne korrespondiert.
- Erhöhung der Transmissionswärmeverluste: In der Praxis findet man in den Außenwänden von bestehenden Gebäuden verlegte Heizungsrohre, die zusätzliche Wärmeverluste verursachen, obwohl sie nach der Definition im beheizten Bereich liegen.
 - Da die Quantifizierung dieser Verluste im Gebäudebestand sehr viel Kenntnis über die vorliegende Verlegeart erfordert und eine nachträgliche Leitungsdämmung in der Regel ohnehin nicht in Frage kommt, darüberhinaus sich diese Verluste durch eine nachträgliche Außendämmung der Außenwand reduzieren, steht der Aufwand für die genaue Bestimmung jedoch in keinem Verhältnis zum Nutzen.

Im Verfahren nach [EPHW 1997] werden die Wärmeverluste von Heizleitungen in der thermischen Hülle aus den genannten Gründen generell vernachlässigt und nur die im unbeheizten Bereich verlegten Rohrleitungen berücksichtigt (vgl. Tab. 6).

Heizwärmeverteilung in unbeheizten Räumen

Die schlecht gedämmten Verteilleitungen in Altbau-Kellern führen (sofern die Belüftung sich in Grenzen hält) zu einer Anhebung der Kellertemperatur. Damit reduzieren sich die Wärmeströme vom Erdgeschoss in den Keller in einem Umfang, der von dem Wärmeschutzstandard der Kellerdecke und -wänden/-boden abhängt. Diese Verluste werden daher tendenziell überschätzt. Solange die Kellerdecke nicht deutlich besser gedämmt ist als die Kellerwände, dürfen daher die Wärmeverluste der Heizwärmeverteilleitungen (Tab. 5) im Rahmen der Energieberatung rechnerisch um 30% reduziert werden.

Dies gilt nicht für die Rohrleitungen der Warmwasserbereitung, da für diese vereinfachend Wärmeverluste für eine Umgebungstemperatur von 20°C verwendet werden (Tab. 8).

2.10 Regelung

2.10.1 Wärmebedarf für die Wärmeübergabe im Raum

Im Berechnungsverfahren des "Energiepaß Heizung/Warmwasser" wird bei der Berechnung der Wärmeverluste eines Gebäudes davon ausgegangen, dass – unabhängig von Heizungssystem oder Regelung – an Heiztagen **im Mittel** eine Raumtemperatur von 20°C erreicht wird. Das dem zu Grunde liegende theoretische Modell des Nutzers geht von einem Toleranzbereich um den Raumtemperatur-Sollwert aus: Die Anlage wird jeweils so betrieben, dass Zeiten mit Überschreitung der Solltemperatur durch Zeiten mit Unterschreitung ausgeglichen werden. Per definitionem gibt es daher in dem Verfahren keine Abhängigkeit des Heizenergiebedarfs von qualitativ unterschiedlichen Regelsystemen – zumindest solange nicht wegen Überheizung Fenster geöffnet werden müssen. Im Verfahren nach EPHW wird daher generell kein zusätzlicher Wärmebedarf für die Nutzenübergabe angesetzt.

2.10.2 Thermostatventile

Um im Zuge der Energieberatung jedoch auch Motivation für den Einbau von Thermostatventilen zu geben (es gibt in Deutschland immer noch Gebäude ohne Thermostatventile), können diese bei Vergleichsrechnungen wie folgt berücksichtigt werden:

Sind keine Thermostatventile oder andere selbsttätig wirkende Einrichtungen zur raumweisen Temperaturregelung gemäß Heizungsanlagenverordnung vorhanden, kann (in Anlehnung an VDI 2067, Blatt 2) der berechnete Heizwärmebedarf Q_H pauschal um 3% erhöht werden.

2.10.3 Vorlauftemperatur-Regelung

Die in Tab. 5 dargestellten Wärmeverluste von Rohrleitungen zur Heizwärmeverteilung wurden für eine witterungsgeführte Vorlauftemperatur-Regelung bestimmt. Ist keine automatische Regelung der Vorlauftemperatur vorhanden, werden diese Werte um folgende Beträge erhöht:

Regelung von Hand (Handmischer): + 30%

keine Regelung (konstante Temperatur): + 60%

2.11 Elektro-Hilfsgeräte von Zentralheizungsanlagen

Sind die technischen Daten und Laufzeiten der in Zentralheizungsanlagen integrierten Stromverbraucher nicht bekannt so können folgende Ansätze verwendet werden (Herleitung in Anhang B).

2.11.1 Kessel

Für die Abschätzung des Stromverbrauchs von Kesseln können die in Tab. 12 Ansätze für die mittlere Leistung während des Brennerbetriebs verwendet werden.

	Hilfsstrombedarf Brenner										
	mittlere elektrische Leistungsaufnahme $P_{el(Start+Betrieb)}$ während Brennerbetrieb inkl. Start [W]										
		Ölkessel Gaskessel mit Holzpelletkesse									
	10 kW	190	29	99							
l gur	20 kW	209	37	128							
istr	30 kW	229	46	157							
<u>e</u>	50 kW	268	63								
ΙĔ	75 kW	316	84								
Nä:	100 kW	365	105								
Nennwärmeleistung	200 kW	560	190								
Se	300 kW	755	275								
	500 kW	1145	445								

Tab. 12

Der jährliche Strombedarf wird wie folgt bestimmt:

$$E_{el,Brenner} = P_{el(Start+Betrieb)} \cdot t_{Betrieb}$$
 [kWh/a]

mit: $P_{el(Start+Betrieb)}$ mittlere elektrische Leistungsaufnahme des Kessels während des Brennerbetriebs inkl. Start [W]

Die jährliche Betriebszeit $t_{Betrieb}$ entspricht den Volllaststunden des Kessels:

$$t_{Betrieb} = \frac{Q_{Erz}}{P_{therm}}$$
 [h/a]

mit: Q_{Erz} jährlich erzeugte Wärmemenge [kWh/a]

 P_{therm} Nennwärmeleistung des Kessels [kW]

Ölkessel

Die mittlere elektrische Leistungsaufnahme von Ölkesseln für Gebläse, Ölpumpe, Ölvorwärmung etc. während des Brennerbetriebs für durchschnittliche Starthäufigkeiten ist:

$$P_{el(Start + Betrieb)} = 170 + 1,95 \cdot P_{therm}$$
 [W]

Gaskessel

Die mittlere elektrische Leistungsaufnahme von Gaskesseln mit Gebläsebrenner während des Brennerbetriebs für durchschnittliche Starthäufigkeiten ist:

$$P_{el(Start + Betrieb)} = 20 + 0.85 \cdot P_{therm}$$
 [W]

Holzpelletkessel

Die mittlere elektrische Leistungsaufnahme von Holzpellekesseln im Leistungsbereich zwischen 8 und 35 kW während des Brennerbetriebs für durchschnittliche Starthäufigkeiten ist:

$$P_{el(Start + Betrieb)} = 70 + 2.9 \cdot P_{therm}$$
 [W]

2.11.2 Wandhängende Wärmeerzeuger mit integrierten Pumpen

Die mittlere elektrische Leistungsaufnahme von wandhängenden Gaskesseln bzw. -thermen wird wie folgt angesetzt:

$$\overline{P_{el}}(Heizzeit) = 100 \, \mathrm{W}$$

$$\overline{P_{el}}(Sommer) = 20 \, \mathrm{W}$$
 mit:
$$\overline{P_{el}}(Heizzeit)$$
 mittlere elektrische Leistungsaufnahme inkl. Brenner, Umwälzpumpe und Regelung während der Heizzeit für Raumheizung (und ggf. Trinkwarmwasser) [W]
$$\overline{P_{el}}(Sommer)$$
 mittlere elektrische Leistungsaufnahme inkl. Brenner, Speicherladepumpe und Regelung während des Sommers für die Trinkwassererwärmung [W]

Bei diesen Geräten sind keine zusätzlichen Werte für Umwälzpumpe und Regelung zu berücksichtigen.

2.11.3 Umwälzpumpen

Umwälzpumpen Heizung

Anhaltswerte für die elektrische Leistungsaufnahme von Umwälzpumpen in Abhängigkeit von der Heizlast des Gebäudes bei Auslegungstemperatur können der folgenden Tabelle entnommen werden. Die genaue Definition der Kategorien "best", "gut", "mäßig" und "schwach" können dem Anhang C entnommen werden (Tabelle C-1).

Heizungsumwälzpumpen Anhaltswerte für die elektrische Leistungsaufnahme in W								
	E best	ffizienzstandard Ve	erteilnetz und Pump mäßig	oe schwach				
	Dest	gut	masig	Johnwach				
1 kW	10	30	50	120				
2 kW	10	30	55	130				
<u>0</u> <u></u> 3 kW	10	30	60	140				
S at 5 kW	10	30	65	160				
필	10	30	75	180				
변 10 kW	10 1,0 %	30 3,0 °/ ₀₀	85 8 °/ ₀₀	200 20 °/ ₀₀				
95 <u>85</u> 15 kW	13 0,8 %	30 2,0 °/ ₀₀	100 7 °/ ₀₀	230 15 °/ ₀₀				
Heizlast des Gebäudes bei Auslegungstemperatur Auslegungstemperatur Auslessen Auslesse	16 0,8 %	35 1,7 % ₀₀	110 5 %	260 13 %				
9 30 kW	22 0,7 °/ ₀₀	45 1,5 % ₀₀	135 4,5 °/ ₀₀	310 10 %				
nsle 50 kW	35 0,7 °/ ₀₀	65 1,3 %	180 3,6 %	400 8 %				
100 kW	60 0,6 %	110 1,1 %	280 2,8 %	600 6 °/ ₀₀				
五 100 kW								
	250 0,5 °/ ₀₀	400 0,8 %	900 1,8 %	1700 3,4 %				
1000 kW	500 0,5 %	700 0,7 °/ ₀₀	1600 1,6 %	3000 3,0 °/ ₀₀				

°/₀₀ = Promille-Angaben, elektrische Leistung bezogen auf Gebäudeheizlast

Tab. 13

Für detaillierte Berechnungen können die folgenden Formeln verwendet werden:

Der erforderliche Volumenstrom berechnet sich aus:

$$\dot{V} = \frac{\dot{Q}_N}{1,16*\Delta\vartheta} \quad [m^3/h]$$

mit: $\dot{Q}_{\scriptscriptstyle N}$ Heizlast des Gebäudes bei Normauslegungstemperatur

 $\Delta artheta$ Temperaturdifferenz (Spreizung), abhängig vom gewählten Heizsystem

- = 20 K bei klassischer 2-Rohr-Heizung (Radiatoren)
- = 10 K bei Niedertemperaturheizungen und Einrohrsystemen
- = 5 K bei Flächenheizungen (Wand- oder Fußbodenheizung)

Die **Förderhöhe** *h* ergibt sich aus:

$$h = \frac{R \cdot L_{Rohr,max}}{1000} + \sum_{i} Z_{i}$$
 [m]

mit R Rohrreibungsdruckverlust (Anhaltswerte in Tabelle C-1) [mm/m]

 $\sum Z_i$ Summe der Einzelwiderstände von Installationen (Anhaltswerte in Tabelle C-1) [m]

Die Länge des längsten Rohrstrangs $L_{rohr,max}$ kann vereinfacht wie folgt bestimmt werden:

$$L_{Rohr,max} = 2 \cdot (L_{Char} + n_{VG} \cdot h_G)$$
 [m]

mit: L_{Char} Charakteristische Gebäudelänge (siehe Abschnitt 2.4) [m]

 n_{VG} Anzahl der Vollgeschosse

 h_G Geschosshöhe (Standardwert = 2,8 m)

Die Förderhöhe h wird in der Regel (Wärmeerzeuger im Keller) um den thermischen Auftrieb vermindert:

$$H = h - 0.000637 \cdot \Delta h \cdot \Delta \vartheta$$
 [m]

mit: H Förderhöhe vermindert um den thermischen Auftrieb [m]

h Förderhöhe ohne therm. Auftrieb [m]

0,000637 Konstante [m / (K m)]

 Δh Höhe des Gebäudes [m]

 $\Delta \theta$ Spreizung Vorlauf–Rücklauf [K]

Bei Dachheizzentralen ist $\Delta \mathcal{G}$ mit einem negativen Vorzeichen zu versehen, da hier die Pumpe gegen den thermischen Auftrieb arbeiten muss.

Die mechanische Leistung der Pumpe ist gleich der zu leistenden Hubarbeit:

$$P_{mech} = \dot{m} \cdot g \cdot H$$
 [W]

mit P_{mech} maximal erforderliche mechanische Leistung der Pumpe [W]

 \dot{m} max. Massenstrom [kg/s]

g Erdbeschleunigung = 9.81 m/s^2

H Förderhöhe [m]

Die mechanische Leistung muss nun über den Wirkungsgrad der Pumpe in eine **elektrische Leistung** umgerechnet werden.

Die theoretische elektrische Leistung der Pumpe ist:

$$P_{el} = \frac{P_{mech}}{\eta_{Pumpe}}$$
 [W]

Dabei gilt für den Wirkungsgrad der Pumpe folgender empirisch ermittelter Zusammenhang (Herleitung siehe Anhang C):

$$\eta_{Pumpe} = \left(C \cdot P_{mech}^{E}\right)^{\frac{1}{E+1}}$$

mit: P_{el} erforderliche elektrische Leistung der Pumpe (ohne Zuschläge) [W]

P_{mech} max. nötige Leistung der Pumpe (s. o.) [W]

 η_{Pumpe} Wirkungsgrad der Pumpe

C, E Konstanten (Werte gemäß dem vorliegenden Effizienzstandard, siehe Tab. 14)

Die elektrische Leistung ist somit gleich:

$$P_{el} = \left(\frac{P_{mech}}{C}\right)^{\frac{1}{E+1}}$$
 [W]

Wirkungsgrad von Umwälzpumpen Empirisch ermittelte Parameter									
Effizienz-Standard	Effizienz-Standard best gut mittel schwach								
Konstante C	0,0644	0,0644	0,0211	0,0041					
Konstante E	0,3242	0,3242	0,4668	0,6792					
Angstzuschlag Festwert 0 W 10 W 40 W 80 W									
Angstzuschlag relativ	0%	1%	5%	10%					

Tab. 14: Parameter für die Abschätzung des Pumpenwirkungsgrads (Konstanten aus: [COSTIC 2000])

Aufgrund von Unsicherheiten bei der Auslegung ("Angstzuschlägen") liegt die **tatsächliche elektrische Leistung** der Pumpe in der Regel über dem theoretisch ermittelten Wert:

$$P_{el,real} = A + (1+B) \cdot P_{el}$$
 [W]

mit: $P_{el,real}$ elektrische Leistung der Pumpe (real, inkl. Angstzuschläge) [W]

A konstanter Angstzuschlag (vgl. Tabelle C-1) [W]

B relativer Angstzuschlag (vgl. Tabelle C-1) [%]

Umwälzpumpen Speicherladekreis

Für die elektrische Leistungsaufnahme von Umwälzpumpen im Speicherladekreis gilt folgender Ansatz

$$P_{el} = 30 + 5 \cdot n_{WE}$$
 [W]

mit: n_{WE} Anzahl Wohneinheiten

Die Einschaltdauer wird mit folgender Gleichung berechnet:

$$t_{SpLade} = 1.2 \cdot \frac{Q_{TWW} + Q_{Vert} + Q_{Speich}}{P_{therm}} \hspace{1cm} \text{[h/a]}$$

mit: t_{SpLade} Betriebszeit Speicherladepumpe [h/a]

Q_{TWW} Nutzenergiebedarf Trinkwarmwasser [kWh/a]

Q_{Vert} Wärmeverluste Trinkwarmwasser-Verteilung [kWh/a]

Q_{TWW} Wärmeverluste Trinkwarmwasser-Speicherung [kWh/a]

P_{therm} Nennwärmeleistung des Kessels [kW]

Umwälzpumpen Trinkwarmwasser-Zirkulation

Für die elektrische Leistungsaufnahme von Umwälzpumpen der Trinkwarmwasser-Zirkulation gilt folgender Ansatz:

$$P_{el} = 30 + 5 \cdot n_{WE} \qquad [W]$$

mit: n_{WF} Anzahl Wohneinheiten

Für die jeweilige Einschaltdauer gelten folgende Standardwerte (vgl. Tab. 8):

Einfamilienhäuser: 18 h/d

Mehrfamilienhäuser: 24 h/d

Umwälzpumpen Solarkreis

Für die elektrische Leistungsaufnahme von Umwälzpumpen im Solarkreis werden folgende Werte angesetzt:

$$P_{el} = 20 + 5 \cdot n_{WE} \qquad [W]$$

mit: n_{WF} Anzahl Wohneinheiten

Ist die jährliche Betriebszeit nicht bekannt, wird sie pauschal auf 1500 h/a angesetzt.

2.11.4 Stromverbrauch von Regelungen

Ist der Stromverbrauch der eingesetzten Regelungen nicht bekannt, kann mit folgenden Pauschalwerten gerechnet werden:

Jahr des Einbaus der Heizungsanlage	EFH	MFH
vor 1980	20 W	35 W
1980-1990	15 W	25 W
nach 1991	10 W	20 W

Bei Gebäuden mit wohnungsweiser Versorgung (Etagenheizungen) wird eine elektrische Leistung von 15 W pro Wohneinheit angesetzt.

Der Stromverbrauch für Regelungen von Solar- und Lüftungsanlagen wird pauschal auf 5 W je Anlage festgelegt.

Grundsätzlich wird bei Regelungen von einer ganzjährigen Betriebszeit (8760 h/a) ausgegangen.

3 Nutzungs- und Klimadaten

3.1 "Norm-Nutzung" als Grundlage für den Norm-Kennwert

Die "Norm-Nutzung" ist die Grundlage für die Berechnung des "Norm-Kennwerts" (vgl. Abschnitt 1.4). Die Daten entsprechen den Ansätzen der DIN V 4108-6 und DIN V 4701-10 für den EnEV-Nachweis.

3.2 "Typische Nutzung" als Grundlage für den Objekt-Kennwert

Für die Berechnung der Energiekennwerte wird im Standardverfahren des EPHW von einer Tagesmitteltemperatur von 20°C ausgegangen. Der Einfluß einer nächtlichen Absenkung der Temperatur auf 15°C wird dabei über einen Reduktionsfaktor gemäß [EPHW 1997] Tab. 1-6 berücksichtigt. Die Erfahrung bei der Anwendung dieses Verfahrens innerhalb der Energieberatung zeigt allerdings, dass insbesondere bei Einfamilienhäusern mit geringem Wärmeschutzstandard der Heizwärmebedarf oft deutlich zu hoch berechnet wird. Bei genauerer Betrachtung der Nutzung dieser Gebäude wird deutlich, dass einzelne Räume oder auch ganze Gebäudeteile (z.B. Dachgeschoß) nur selten direkt beheizt werden. Die sich dort einstellende Temperatur hängt von dem Verhältnis der Wärmewiderstände zum beheizten Bereich und zur Außenluft ab. Neben den Flächen und k-Werten geht hier auch die Öffnungsstellung der Innentüren und die konvektive Durchströmung des Gebäudes mit ein. Diese "räumlich eingeschränkte Beheizung" wird oft überlagert durch eine "zeitlich eingeschränkte Beheizung" (Nachtabsenkung).

Bei Gebäuden mit kleinerer Wohnfläche bzw. mit weniger Räumen (Reihenhäuser, Mehrfamilienhäuser) ist die beschriebene eingeschränkte Beheizung in viel geringerem Umfang zu beobachten.

Um die Effekte der räumlich und zeitlich eingeschränkten Beheizung mit zu berücksichtigen, wird die bisher verwendete "Standard-Nutzung" modifiziert. In Abhängigkeit von der Gebäudegröße (freistehendes EFH, RH/MFH) bzw. mittleren Wohnungsgröße und dem Temperatur-spezifischen Wärmeverlust pro m² Energiebezugsfläche werden im folgenden Abschnitt "typische Nutzungsdaten" in Form einer Raumtemperaturabsenkung bzw. von Korrekturfaktoren für die Wärmeverluste angesetzt. Grundlage sind zwei mit stationären und dynamischen Energiebilanzverfahren durchgeführte Parameterstudien [Loga et al. 1999].

Die "typische Nutzung" ist die Grundlage für die Berechnung des "Objekt-Kennwerts" (vgl. Abschnitt 1.4). Bei Software für die Energieberatung sollte die "typische Nutzung" als Vorbelegung verwendet werden. Falls gemessene Verbrauchsdaten als Grundlage für eine Anpassung (siehe nächster Abschnitt) nicht verfügbar sind, kann sie Grundlage für die Energieberatung sein.

3.2.1 Typische Raumtemperaturen: Räumlich und zeitlich eingeschränkte Beheizung

Werden einzelne Zonen eines Gebäudes nicht direkt beheizt oder wird die Raum-Solltemperatur des Gebäudes nachts abgesenkt, so ergibt sich in der Heizzeit eine Reduktion der Temperaturdifferenz zwischen innen und außen. Diese Reduktion wird im folgenden in der Bilanzgleichung in Form von Korrekturfaktoren f_{ze} und f_{re} berücksichtigt, die auf die jährlichen Wärmeverluste wirken (Herleitung der Formeln in: [Loga/Kahlert/Laidig/Lude 1999]).

Darüber hinaus ist zu berücksichtigen, dass die Tagsolltemperaturen für Gebäude ohne räumliche Teilbeheizung meist höher als 20°C liegen. Daher muss die Temperaturdifferenz-Summe Θ für den Fall der typischen Nutzung um den Wert $\Delta\vartheta\cdot t_H$ erhöht werden. Für eine Heizzeit von 225 d/a und eine Tagsoll-

temperatur von 21 °C (Erhöhung um 1 K) ergibt sich ein Zuschlagswert von 5,4 kKh/a auf den Standardwert der Temperaturdifferenz-Summe 84 kKh/a.

$$Q_V = f_{ze} \cdot f_{re} \cdot (H_T + H_L) \cdot (\Theta + \Delta \vartheta \cdot t_H)$$
 [kWh/a] (Gl. 1)

mit:

 H_T Temperatur-spezifischer Transmissionswärmeverlust [W/K]

 H_I Temperatur-spezifischer Lüftungswärmeverlust [W/K]

Θ Temperaturdifferenz-Summe für Raumsolltemperatur 20°C (0,024 x Gradtage) [kKh/a] Standardwert für Heizgrenze 12°C = 84 kKh/a (= 3500 Kd/a · 0,024 kh/d)

 $\Delta \vartheta$ Temperaturerhöhung gegenüber Raumsolltemperatur 20°C [K];

Standardwert = 1 K

 t_H Länge der Heizzeit für die gegebene Heizgrenze [h/a] Standardwert für Heizgrenze 12°C = 5400 h/a (= 225 d/a \cdot 24 h/d)

Eine alternative Darstellung von (Gl. 1) ist:

$$Q_V = f_{ze} \cdot f_{re} \cdot (H_T + H_L) \cdot (\vartheta_{i,Soll} - \vartheta_e) \cdot t_H$$
 [kWh/a] (Gl. 2a)

mit:

 $\vartheta_{i,Soll}$ Raumsolltemperatur für direkt beheizte Räume [°C];

Standardwert = 21 °C

 ϑ_e Außentemperatur in der Heizzeit

Standardwert für Heizgrenze 12°C = 4,4 °C (= 20 °C - (3500 Kd/a / 225 d/a))

Zeitlich eingeschränkte Beheizung

Der Korrekturfaktor für zeitlich eingeschränkte Beheizung ist definiert durch:

nur Nachtabsenkung:
$$f_{ze} = 0.9 + \frac{0.1}{1+h}$$
 [-] (Gl. 3a)

Nacht- und Wochenendabsenkung:
$$f_{ze} = 0.75 + \frac{0.25}{1+h}$$
 [-] (Gl. 3b)

Dabei ist h der temperatur- und (wohn-)flächenspezifische Wärmeverlust des Gebäudes:

$$h = \frac{H_T + H_L}{A_{FR}}$$
 [W / (m²K)] (GI. 4)

Die folgende Tabelle zeigt die aus den obigen Formeln bestimmten Reduktionsfaktoren für die zeitlich eingeschränkte Beheizung von Gebäuden mit unterschiedlichem Wärmeschutzstandard:

	sfaktor Wärm Nochenenda			
		spezif.	Abser	kbetrieb
	spezif.	Wärme-	Nacht	Nacht und
	Heizlast*	leitwert**		Wochen-
	[W/m²]	[W/(m ² K)]		ende
Altbau, schlechter Wärmeschutz	150	5,0	0,92	0,79
Altbau, verbessert	100	3,3	0,92	0,81
1. + 2. WSchV	80	2,7	0,93	0,82
Neubau nach WSchV95	60	2,0	0,93	0,83
Niedrigenergie-Standard	40	1,3	0,94	0,86
Passivhaus-Standard	15	0,5	0,97	0,92

Zwischenwerte können linear interpoliert werden

Tab. 15: Reduktionsfaktor f_{ze} in Abhängigkeit vom Wärmeschutz-Standard

Räumlich eingeschränkte Beheizung (Wohngebäude)

Der Korrekturfaktor für räumlich eingeschränkte Beheizung ist im Fall von Wohngebäuden definiert durch:

$$f_{re} = \left(\frac{1}{0.5\sqrt{h} \cdot n^2 + 1}\right)$$
 [-]

 n_{re} ist der nicht direkt beheizte Raumanteil innerhalb der thermischen Hülle. n_{re} nimmt im Allgemeinen mit der Zahl der Zimmer pro Wohnung bzw. mit der Wohnungsgröße zu. Auf der Basis von Erfahrungswerten wird folgende Abhängigkeit von der mittleren Wohnungsgröße eines Gebäudes A_{WE} definiert:

$$n_{re} = 0.25 + 0.2 \cdot \arctan \frac{A_{WE} - 100}{50}$$
 [-]

 $A_{\!W\!E}$ ist die Wohnfläche je Wohnung:

$$A_{WE} = \frac{A_{EB}}{n_{WE}}$$
 [m²] (Gl. 7)

mit: A_{EB} Energiebezugsfläche des Wohngebäudes = beheizte Wohnfläche [m^2]

 n_{WE} Anzahl der Wohneinheiten des Gebäudes [-]

Für normale Wohnungsgrößen liegt n_{re} in einem Bereich zwischen 10 und 50% (Bild 2).

^{*)} Heizlast bei Auslegungsbedingungen pro m² Energiebezugsfläche

^{**)} Wärmeverluste (Transmission und Lüftung) pro K Temperaturdifferenz und m² Energiebezugsfläche

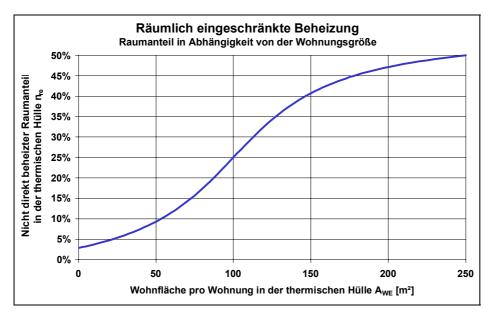


Bild 2: Abhängigkeit des nicht direkt beheizten Raumanteils n_{re} von der Wohnfläche

Die folgende Tabelle zeigt die aus den obigen Formeln bestimmten Reduktionsfaktoren für die räumlich eingeschränkte Beheizung von Wohngebäude mit unterschiedlichem Dämmstandard und Wohnungsgröße:

Reduk bei räumlich		ktor Wärm eheizung (äude)						
				Gebäudetyp						
		spezif.	EFH	RH	MFH					
	spezif.	Wärme-	Wohnfl	äche pro Wo	ohnung					
	Heizlast*	leitwert**	150 m²	100 m²	50 m²					
			nicht direkt beheizter Anteil							
	$[W/m^2]$									
Altbau, schlechter Wärmeschutz	150	5,0	0,84	0,93	0,99					
Altbau, verbessert	100	3,3	0,87	0,95	0,99					
1. + 2. WSchV	80	2,7	0,88	0,95	0,99					
Neubau nach WSchV95	60	2,0	0,90	0,96	0,99					
Niedrigenergie-Standard	40	1,3	0,91	0,97	1,00					
Passivhaus-Standard	15	0,5	0,94	0,98	1,00					

Zwischenwerte können linear interpoliert werden

Tab. 16: Reduktionsfaktor $f_{\it re}$ in Abhängigkeit von Wärmeschutz-Standard und Wohnungsgröße

^{*)} Heizlast bei Auslegungsbedingungen pro m² Energiebezugsfläche

^{**)} Wärmeverluste (Transmission und Lüftung) pro K Temperaturdifferenz und m² Energiebezugsfläche

Räumlich und zeitlich eingeschränkte Beheizung (Wohngebäude)

Die folgende Tabelle zeigt für Wohngebäude die Kombination der Reduktionsfaktoren für räumliche und zeitliche Teilbeheizung für Wohngebäude mit unterschiedlichem Wärmeschutzstandard und Wohnungsgröße gemäß den vorangegangenen Abschnitten:

Reduk bei räumlicher Teilbehe		ktor Wärm nd Nachta		ı (Wohnge	bäude)			
				Gebäudetyp				
		spezif.	EFH	RH	MFH			
	spezif.	Wärme-	Wohnfl	äche pro Wo	ohnung			
	Heizlast*	leitwert**	150 m²	100 m²	50 m ²			
			nicht direkt beheizter Anteil					
	[W/m ²]	[W/(m ² K)]	41%	25%	9%			
Altbau, schlechter Wärmeschutz	150	5,0	0,77	0,86	0,91			
Altbau, verbessert	100	3,3	0,80	0,87	0,92			
1. + 2. WSchV	80	2,7	0,82	0,88	0,92			
Neubau nach WSchV95	60	2,0	0,84	0,89	0,93			
Niedrigenergie-Standard	40	1,3	0,86	0,91	0,94			
Passivhaus-Standard	15	0,5	0,91	0,95	0,96			

Zwischenwerte können linear interpoliert werden

Tab. 17: Reduktionsfaktor Wärmeverluste für den Fall einer "typischen Nutzung" von Wohngebäuden

nach: [Loga/Kahlert/Laidig/Lude 1999]

Die Auswirkung der obigen Definitionen auf die mittlere Raumtemperatur in der Heizzeit zeigt Bild 3. Als Raumsolltemperatur für den direkt beheizten Bereich ist als Standardwert 21°C angesetzt. Bei typischen Einfamilienhäusern (150 m² Wohnfläche) ergeben sich daraus mittlere Raumtemperaturen über die Heizzeit für unsanierte Altbauten von ca. 17,5 °C, für Niedrigenergiehäuser von 18,8 °C, für Passivhäuser von 19,7 °C. Für Mehrfamilienhäuser mit kleinen Wohnungen (50 m² Wohnfläche) liegen die mittleren Raumtemperaturen für unsanierte Altbauten bei ca. 19,5 °C, für Niedrigenergiehäuser bei 20,0 °C, für Passivhäuser bei 20,5 °C.

Demgegenüber liefert der Ansatz der DIN V 4108-6 bzw. EnEV eine konstante Raumtemperatur von 18,2 °C (Raum-Solltemperatur 19°C, kombiniert mit einem Reduktionsfaktor für die Nachtabsenkung von 0,95). Diese entspricht für Einfamilienhaus-Altbauten zwar etwa den Raumtemperaturen der "typischen Nutzung", bei besserem Wärmeschutz und kleineren Wohnungen liegt sie jedoch um bis zu 2 K niedriger.

^{*)} Heizlast bei Auslegungsbedingungen pro m² Energiebezugsfläche

^{**)} Wärmeverluste (Transmission und Lüftung) pro K Temperaturdifferenz und m² Energiebezugsfläche

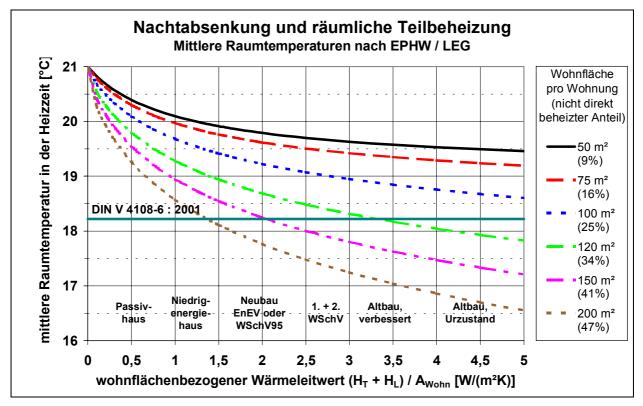


Bild 3: Abhängigkeit der mittleren Raumtemperatur von Wärmeschutzstandard und Wohnungsgröße

(Basis-Klimadaten: 84 kKh/a (Raumsolltemperatur 20°C / Heizgrenze 12°C); 225 d/a Heizzeit)

3.2.2 Typischer Luftwechsel

Die typischen Werte des Luftwechsels können [EPHW 1997] Tab. 1-3 und 1-4 entnommen werden.

Der Standardwert für Lüftung durch Fensteröffnen und Undichtigkeiten ist auf 0,6 1/h festgesetzt. Bei undichten Fenstern ohne Lippendichtung wird auf diesen Luftwechsel ein Zuschlag von 0,1 1/h erhoben.

3.3 Abgleich mit gemessenen Verbrauchsdaten in der Energieberatung

Um die voraussichtliche Energieeinsparung durch Maßnahmen möglichst genau zu bestimmen, muss der rechnerische Heizenergiebedarf mit gemessenen Verbrauchswerten abgeglichen werden. Zu diesem Zweck wird zunächst eine Zeit- und Witterungsbereinigung der gemessenen Verbrauchsdaten nach VDI 2067 Blatt 1 durchgeführt. Das so extrapolierte langjährige Mittel des Heizenergieverbrauchs ist Ausgangspunkt für die Energieberatung.

Beim Abgleich muss jeweils berücksichtigt werden, ob in den Verbrauchswerten die Warmwasserbereitung enthalten ist.

Alternativ können die folgenden beiden Methoden für den Abgleich mit dem gemessenen Verbrauch angewendet werden.

3.3.1 "Individuelle Nutzung"

Bei der Methode der "individuellen Nutzung" werden die in die Berechnung einfließenden Nutzungsdaten soweit angepasst, dass eine Übereinstimmung erreicht wird. Soweit keine detaillierteren Informationen vorliegen, werden Raumsolltemperatur und Luftwechsel proportional verändert (0,05 1/h je K Raumtemperaturänderung). Die Variationsgrenzen liegen im Fall der Temperatur zwischen 15 und 24°C, im Fall des Luftwechsels zwischen 0,3 und 1,0 1/h.

Die Faktoren für Teilbeheizung bleiben bei dieser Anpassung wirksam. Damit wird der in der Praxis anzutreffende Effekt berücksichtigt, dass Maßnahmen bei Wärmeschutz und Heizungstechnik bei gleichem Heizverhalten zu einer Anhebung der mittleren Raumtemperatur führen.

Für die Berechnung des Energieverbrauchs im sanierten Zustand werden Luftwechsel und Raum-Solltemperatur des Ist-Zustands direkt übernommen. Werden neue Fenster eingebaut, so entfällt der für den unsanierten Fall gegebenenfalls angesetzte Zuschlag von 0,1 1/h.

Für die Berechnung des Norm- bzw. Objekt-Kennwerte (z.B. zwecks Ausstellung eines Energiepasses) als Maßstab für die energetische Qualität des Gebäudes muss dagegen die "Norm-Nutzung" bzw. die "typische Nutzung" verwendet werden. In jedem Fall sollte nachvollziehbar sein, welche Nutzungsdaten zu Grunde gelegt wurden.

Eine Abweichung der Tag-Solltemperatur ϑ_i (Ist) von dem Standardwert 20°C kann durch Korrektur der Gradstunden Θ berücksichtigt werden (dabei muß ϑ_i immer größer als die jeweilige Heizgrenztemperatur bleiben):

$$\Theta(\vartheta_{TagSoll}(Ist)) = \Theta(20^{\circ}C) + t_{H} \cdot (\vartheta_{TagSoll}(Ist) - 20^{\circ}C)$$
 [kKh/a]

 $\Theta\left(\vartheta_{TagSoll}\left(\text{Ist}\right)\right)$ Temperaturdifferenz-Summe für eine von 20°C abweichende Raumsoll-

temperatur [kKh/a]

⊕ (20°C) Temperaturdifferenz-Summe für Tag-Solltemperatur 20°C (0,024 x Gradtage)

[kKh/a]

 $\vartheta_{TagSoll}$ (Ist) tatsächliche Tag-Solltemperatur [°C]

 t_H Länge der Heizzeit [h/a]

(alle Größen für die jeweils gleiche Heizgrenztemperatur)

3.3.2 Anpassungsfaktor

Alternativ zu dem beschriebenen Verfahren der Verbrauchsanpassung kann auch folgendes vereinfachtes Verfahren verwendet werden:

- 1. Bestimmung des Faktors für die Verbrauchsanpassung f_{VA} = Verhältnis des gemessenen Endenergieverbrauchs zum Endenergiebedarf (berechnet mit typischen Nutzungsdaten und regionalem Klima / Objekt-Kennwert);
- 2. Durchführung der Energiebilanzberechnungen für die Gebäudevarianten mit den vorgeschlagenen Maßnahmen;
- 3. Bestimmung des für das Gebäude bei gleicher Nutzung zu erwartenden Endenergieverbrauchs = f_{VA} x berechneter Endenergiebedarf

Unterhalb einer Grenze f_{VA} < 0,5 können keine vernünftigen Aussagen mehr über die zu erwartende Energieeinsparung gemacht werden. Daher muss hier die Berechnung ohne Anpassung durchgeführt werden und im Energieberatungsprotokoll ausdrücklich auf die den Ergebnissen zu Grunde liegenden typischen Nutzungsdaten hingewiesen werden.

3.4 Standard-Klimadaten Deutschland als Grundlage für den "Norm-Kennwert"

Die "Standard-Klimadaten Deutschland" sind die Grundlage für die Berechnung des "Norm-Kennwerts" (Abschnitt 1.4). Die Daten entsprechen den Ansätzen der DIN V 4108-6 und DIN V 4701-10 für den EnEV-Nachweis.

3.5 Regionale oder lokale Klimadaten als Grundlage für den "Objekt-Kennwert"

Für die Ermittlung typischer Kennwerte und für die Energieberatung sollten regionale oder lokale Klimadaten verwendet werden. Für eine Reihe von Standorten können diese dem "Leitfaden Energiebewußte Gebäudeplanung - Heizenergie im Hochbau" [LEG] (abgedruckt in Anhang B) oder der DIN V 4108-6 entnommen werden. Die Verwendung von Klimadaten ist für eine Heizgrenze von 12°C und von 15°C zulässig - allerdings muß die Heizgrenze für Gradtage bzw. Gradstunden und Globalstrahlung jeweils gleich sein. Wird die DIN V 4108-6 herangezogen, so sind die dort für 19°C angegebenen Temperaturdifferenz-Summen (bzw. Gradtagszahlen) auf die entsprechende Raum-Soll-Temperatur anzupassen (siehe Abschnitte 3.2.1 und 3.3).

Für die Ermittlung des "Objekt-Kennwerts" im Bundesland Hessen können die [EPWH 1997] Tab. 1-5 und 1-8 herangezogen werden.

4 Weitere Ergänzungen

4.1 Energiebezugsfläche

4.1.1 Flächenbezug des Norm-Kennwertes

Der nach EnEV bzw. DIN V 4108-6 Anhang D bestimmte Energiebedarf auf den Ebenen Nutz-, End- und Primärenergie wird auf die "Gebäudenutzfläche" A_N bezogen. Diese berechnet sich aus:

$$A_N = 0.32 \cdot V_e \qquad [\text{m}^2]$$

mit: V_e = beheiztes Gebäudebruttovolumen [m³]

4.1.2 Flächenbezug des Objekt-Kennwertes

Für die Ermittlung des Objekt-Kennwertes wird der mit typischen Randbedingungen berechnete Energiebedarf auf den Ebenen Nutz-, End- und Primärenergie auf die tatsächlich nutzbare und beheizte Fläche des Gebäudes, die **Energiebezugsfläche A**EB bezogen. Diese ist für Wohngebäude und Nicht-Wohngebäude unterschiedlich definiert:

A_{EB} für Wohngebäude

Bei Wohngebäuden wird als Energiebezugsfläche A_{EB} die "beheizte Wohnfläche" verwendet.

Die "beheizte Wohnfläche" ist der innerhalb der thermischen Hülle liegende Teil der Wohnfläche. Die Wohnfläche ist nach der II. Berechnungsverordnung § 42 bis 44 definiert. Sie entspricht im Wesentlichen der Netto-Grundfläche der im Gebäude befindlichen Wohnungen. Unter Dachschrägen wird der Bereich mit einer lichten Höhe < 2 m und \geq 1 m zur Hälfte, unter < 1 m nicht angerechnet. Die Grundflächen von Treppen werden grundsätzlich nicht berücksichtigt. Angerechnet werden jedoch Raumteile unter Treppen mit einer lichten Raumhöhe \geq 2m.

Bei der Ermittlung der "beheizten Wohnfläche" dürfen Balkonflächen und unbeheizte Wintergärten nicht einbezogen werden. Keller- und Nebenräume, die nach der jeweiligen Landesbauordnung nicht als Wohnraum gelten, dürfen mit 50% ihrer Fläche zur Energiebezugsfläche hinzugerechnet werden, sofern sie

- im Falle einer Neubau-Planung innerhalb der thermischen Hülle liegen,
- im Falle von bestehenden Gebäuden aktiv beheizbar sind.

Bei der Analyse von gemessenen Verbrauchsdaten größerer Gebäudebestände kann vereinfachend anstelle der beheizten Wohnfläche die Wohnfläche als Energiebezugsfläche verwendet werden.

A_{EB} für Nicht-Wohngebäude: beheizte Nettogrundfläche

Für alle anderen Gebäude ist die Energiebezugsfläche der Anteil der Netto-Grundfläche, für dessen Nutzung eine Beheizung erforderlich ist. Die Netto-Grundfläche wird nach DIN 277, Teil 2 bestimmt.

Räume, die aufgrund ihrer Nutzung nicht aktiv beheizt werden müssen, aber innerhalb der thermischen Hülle liegen, dürfen im Falle einer Neubau-Planung mit 50% ihrer Netto-Grundfläche zur Energiebezugsfläche hinzugerechnet werden.

4.1.3 Umrechnung: reale Flächen -> A_N

Die "Gebäudenutzfläche" A_N ist je nach Gebäude zwischen 10 und 40% größer als die reale Wohnfläche (vgl. [IWU 2001]). Falls das Gebäude-Bruttovolumen nicht bekannt ist und A_N -abhängige Werte aus der DIN V 4701-10 verwendet werden sollen, kann folgende Abschätzung vorgenommen werden:

$$A_N = 1.25 \cdot A_{ER}$$
 [m²]

4.2 U-Werte Fenster

Die in EPHW-Tab. 1-2 dargestellten k-Werte für Fenster verschiedener Größe und Bauart basieren auf der DIN 4108-4. In der mittlerweile verfügbaren DIN EN ISO 10077 wird die Berechnung des Fenster-U-Wertes einschließlich der Wärmebrücken am Randverbund, im Rahmen und beim Einbau geregelt. In [Kehl 2000] ist die EPHW-Tabelle mit Hilfe von zweidimensionalen Wärmebrückenberechnungen an typischen Fenstern aktualisiert worden. In den folgenden Tabellen werden die dort durchgeführten Berechnungen aufgenommen und leicht modifiziert dargestellt (in der Grundtabelle sind jetzt keine Zu-/Abschläge für die Einbausituation mehr enthalten). Als Werkzeug zur Bestimmung der Fenster-U-Werte in Abhängigkeit vom Fensterformat kann die Software *Fenestra* verwendet werden (kostenlos im Internet unter: www.iwu.de).

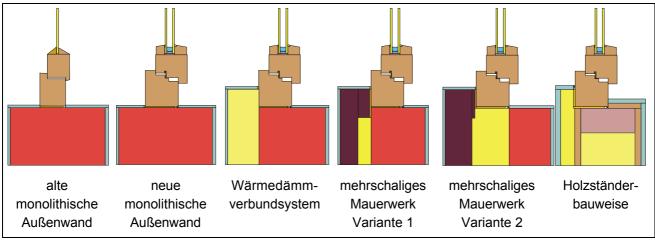
Ausgegangen wird dabei jeweils von einem Fenster mittlerer Größe und dem höchsten U_FWert der Rahmenmaterialgruppe. Die Werte der Tab. 18 stellen den Basisfall dar (Fenster mit Aluminium-Randverbund, ohne Einbau). Mit Hilfe der Zusatztabelle 1 (Tab. 19) kann die Auswirkung der Einbausituation (zusätzliche Verluste des Wandanschlusses) und mit Zusatztabelle 2 (Tab. 20) die Auswirkung der Verwendung von Edelstahl oder Kunststoff als Randverbund berücksichtigt werden. Es handelt sich um fensterflächenbezogene Zuschläge auf den U-Wert (negativer Zuschlag).

Ist die Einbausituation nicht bekannt, wird pauschal der Zuschlag für die neue monolithische Außenwand verwendet (vgl. [Kehl 2000]).

Standardwerte für erste grobe Abschätzungen (Glasanteil 60%) können Tab. 4 entnommen werden. Aufgrund des geänderten Normenwerkes dürfen die Tab. 1-1 und 1-2 in [EPHW 1997] nicht mehr angewendet werden.

Bas	sistabelle: U-V	Verte von Fen	stern *		Vergleich zur
	große Fenster und Fenstertüren	mittlere Fenster	kleine Fenster	Sprossen- fenster	DIN V 4108-4 Tab.2
					In der DIN 4108-
				Ш	4 Tabelle 2 fehlt $\Psi_{\text{Randverbund}}$
Fensterfläche	von bis	von bis	von bis	von bis	von bis
"Passivhaus-Rahmen"	Rahmen: U	1,0 m ² 2,0 m ² √ ≤ 0,8 W/(m ² K)	0,3 m ² 1,0 m ²	0,5 m² 3,0 m²	Keine Angaben
Glasanteil der Fensterfläche	71 %	60 %	43 %	63 %	70 %
Verglasungstyp ** U _g = 0,9 (z.B. 3-2Py-Kr)	0,97	U-Wert des Fenst 0,99	ers U _w in W/(m²K 1,01	1,10	1,2
$U_g = 0.7$ (z.B. 3-2Ag-Kr)	0,83	0,87	0,93	0,98	1,1
$U_g = 0.4$ (z.B. 3-2Mag-Xe)	0,61	0,69	0,80	0,80	_
"Niedrigenergiehaus-Rahmen"	75 %	< U _f ≤ 1,5 W/(m ² 65 %	K) :B. guter Holzrahmen 50 %	(U _r = 1,45 W/(m ^{2*} K)) 67 %	70 %
Glasanteil der Fensterfläche Verglasungstyp **		U-Wert des Fenst			70 %
U _g = 2,8 (z.B. 2-Lu)	2,56	2,46	2,30	2,58	2,5
U _g = 1,8 (z.B. 2-Py-Lu)	1,87	1,89	1,90	2,06	1,8
$U_g = 1,5 (z.B. 2-Py-Ar)$ $U_g = 1,1 (z.B. 2-Mag-Ar)$	1,64 1,34	1,69 1,43	1,75 1,56	1,86 1,57	1,6 1,3
$U_g = 0.7$ (z.B. 2-Ag-Kr)	1,05	1,17	1,36	1,33	1,1
entspr. Rahmenmaterial der Gruppe 1		< U _f ≤ 2,0 W/(m² z.B. Vierkamm	K) erkunststoffrahmen / S	Standard-Holzrahmen	
Glasanteil der Fensterfläche	75 %	65 %	49 %	67 %	70 %
Verglasungstyp ** U _g = 2,8 (z.B. 2-Lu)	2,70	U-Wert des Fenst 2,65	.ers 0 _w in w/(iii-K	2,79	2,5
$U_g = 1.8$ (z.B. 2-Py-Lu)	1,97	2,03	2,12	2,17	1,8
U _g = 1,5 (z.B. 2-Py-Ar)	1,75	1,84	1,97	1,97	1,6
$U_g = 1,1$ (z.B. 2-Mag-Ar) $U_g = 0,7$ (z.B. 2-Ag-Kr)	1,45 1,17	1,58 1,35	1,78 1,61	1,70 1,48	1,3 1,2
0g = 0,7 (2.B. 2-Ag-111)		< U _f ≤ 2,8 W/(m ²		1,10	1,2
entspr. Rahmenmaterial der Gruppe 2.	1 nach DIN 4108 Teil	4 z.B. Dreik	ammerkunststoffrahm		
Glasanteil der Fensterfläche Verglasungstyp **	75 %	65 % U-Wert des Fenst	49 %	67 %	70 %
U _a = 5,8 (z.B. EV)	5,19	4,95	4,55	5,20	5,2
U _g = 3,1 (z.B. 2-Lu; 8mmSZR)	3,13	3,13	3,13	3,26	3,0
U _g = 2,8 (z.B. 2-Lu)	2,90	2,94	2,98	3,05	2,7
$U_g = 1.8$ (z.B. 2-Py-Lu) $U_g = 1.5$ (z.B. 2-Py-Ar)	2,18 1,95	2,32 2,12	2,53 2,38	2,43 2,23	2,0 1,8
$U_g = 1,1$ (z.B. 2-Mag-Ar)	1,65	1,86	2,18	1,97	1,6
entspr. Rahmenmaterial der Gruppe 2.		< U _f ≤ 3,5 W/(m² 4 z.B. Alurahme	K) n mit therm. Trennung	(Uf = 3,43 W/(m²*K))	
Glasanteil der Fensterfläche	76 %	66 %	51 %	68 %	70 %
Verglasungstyp ** U _g = 5,8 (z.B. EV)	5,40	U-Wert des Fenst 5,23	ers U _w in W/(m²K 4,96	5,46	5,2
U _g = 3,1 (z.B. 2-Lu; 8mmSZR)	3,32	3,40	3,52	3,53	3,2
U _g = 2,8 (z.B. 2-Lu)	3,09	3,20	3,36	3,33	2,9
U _g = 1,8 (z.B. 2-Py-Lu)	2,35	2,55	2,87	2,67	2,2
U _g = 1,4 (z.B. 2-Py-Kr)	2,04 Rahmen: U	2,29 _f > 3,5 W/(m²K)	2,67	2,40	1,9
entspr. Rahmenmaterial der Gruppe 2. Glasanteil der Fensterfläche			ohne therm. Trennung 51 %	(Uf = 6,96 W/(m²*K)) 68 %	70 %
Verglasungstyp **		U-Wert des Fenst			
U _g = 5,8 (z.B. EV)	6,25	6,41	6,67	6,57	5,2
$U_g = 3,1$ (z.B. 2-Lu; 8mmSZR) $U_g = 2,8$ (z.B. 2-Lu)	4,08 3,85	4,46 4,26	5,06 4,91	4,41 4,20	3,4 bis 4,0 3,2 bis 3,7
$U_g = 2.8 \text{ (z.B. 2-Lu)}$ $U_g = 1.8 \text{ (z.B. 2-Py-Lu)}$	3,05	3,64	4,46	3,60	2,5 bis 3,0
U _g = 1,4 (z.B. 2-Py-Kr)	2,83	3,38	4,25	3,32	2,2 bis 2,7
Die der Berechnung des Gesamt-Fenster-U-V					
· · · · · · · · · · · · · · · · · · ·	-	zw. 3 = Zwei- bzw. Dreifac lytisch (ε=0,18), Ag = Silbe			non, xe = Xenon;
*) mit Alu-Randverbund ohne Einbau			sung in W/(m²K) / Zwis		erpoliert werden
Tab 19: Fonstor II M					

Tab. 18: Fenster-U-Werte / Basistabelle (nach: [Kehl 2000])


	große Fenster und	mittlere Fenster	kleine Fenster	Sprossenfenste
	Fenstertüren			
Fensterfläche	von bis	von bis	von bis	von bis
	2,0 m ² 4,0 m ²	1,0 m ² 2,0 m ²	0,3 m ² 1,0 m ²	0,5 m ² 3,0 m ²
Na	T	J _r ≤ 0,8 W/(m ² K)		T
Neue monolithische AW Wärmedämmverbundsystem	0,09	0,13	0,20	0,13
Mehrschaliges MW V1 mit D.	0,09 0,03	0,13 0,05	0,20 0,08	0,13 0,05
Mehrschaliges MW V2 mit D.	0,35	0,50	0,75	0,50
Holzständerbauweise	0,02	0,03	0,05	0,03
		< U _f ≤ 1,5 W/(m ² K)		1
Alte monolithische AW	0,27	0,38	0,58	0,37
Neue monolithische AW	0,15	0,22	0,33	0,22
Wärmedämmverbundsystem	0,08	0,12	0,17	0,13
Mehrschaliges MW V1 mit D.	0,06	0,08	0,12	0,09
Mehrschaliges MW V2 ohne D.	0,22	0,32	0,48	0,31
Mehrschaliges MW V2 mit D.	0,35	0,50	0,76	0,48
Holzständerbauweise	0,08	0,12 < U ₁ ≤ 2,0 W/(m ² K)	0,17	0,13
Alte monolithische AW	0,26	<u>< U_f ≤ 2,0 W/(m-K)</u> 0,37		0.24
Neue monolithische AW	0,26	0,37	0,56 0,33	0,34 0,20
Wärmedämmverbundsystem	0,15	0,08	0,33	0,20
Mehrschaliges MW V1 mit D.	0,04	0,05	0,07	0,05
Mehrschaliges MW V2 ohne D.	0,20	0,28	0,43	0,26
Mehrschaliges MW V2 mit D.	0,32	0,45	0,68	0,42
Holzständerbauweise	0,02	0,03	0,05	0,03
		< U _f ≤ 2,8 W/(m ² K)		
Alte monolithische AW	0,26	0,37	0,56	0,34
Neue monolithische AW	0,16	0,22	0,33	0,20
Wärmedämmverbundsystem	0,06	0,09	0,13	0,07
Mehrschaliges MW V1 mit D.	0,04	0,05	0,08	0,04
Mehrschaliges MW V2 ohne D.	0,20	0,29	0,44	0,26
Mehrschaliges MW V2 mit D. Holzständerbauweise	0,32	0,45 0,04	0,69	0,41
i ioizstariuei bauweise	0,03	 U_f ≤ 3,5 W/(m²K) 	0,05	0,03
Alte monolithische AW	0,26	0,37	0,56	0,34
Neue monolithische AW	0,16	0,23	0,35	0,22
Wärmedämmverbundsystem	0,14	0,20	0,30	0,19
Mehrschaliges MW V1 mit D.	0,08	0,12	0,18	0,11
Mehrschaliges MW V2 ohne D.	0,20	0,28	0,43	0,27
Mehrschaliges MW V2 mit D.	0,37	0,53	0,81	0,50
Holzständerbauweise	0,06	0,08	0,12	0,08
		J _f > 3,5 W/(m²K)		
Alte monolithische AW	0,33	0,46	0,72	0,43
Neue monolithische AW	0,27	0,38	0,59	0,35
Wärmedämmverbundsystem	0,14	0,20	0,31	0,18
Mehrschaliges MW V2 ohne D. Mehrschaliges MW V2 mit D.	0,20	0,28	0,44	0,25
Holzständerbauweise	0,38 0,06	0,53 0,08	0,82 0,13	0,49 0,06
		egenden Rahmen-U-We		0,00

Fenster-U-Werte / Zusatztabelle Einbausituation / Zuschläge gegenüber monolithischem Tab. 19: Mauerwerk (nach: [Kehl 2000])

Zusatztabell	e 2: U-We	rt-Korrekt	uren für d	den Randv	verbund i	n W/(m²K)	(Zuschlä	ige)
		nster und ertüren	mittlere	Fenster	kleine	Fenster	Sprosse	nfenster
							B	
Fensterfläche	von	bis		bis		bis	von	bis
	2,0 m²	4,0 m²	1,0 m²		0,3 m²	1,0 m²	0,5 m²	3,0 m²
				0,8 W/(m elstahl/Kun				
Verglasungstyp	Edelstahl	Kunststoff	Edelstahl	Kunststoff	Edelstahl	Kunststoff	Edelstahl	Kunststoff
U _a ≤ 0,9	-0,02	-0,04	-0,02	-0,05	-0,03	-0,06	-0,05	-0,10
				J _f ≤ 1,5 W/ elstahl/Kun				
Verglasungstyp	Edelstahl			Kunststoff		Kunststoff	Edelstahl	Kunststoff
U _a = 2,8 (z.B. 2-Lu)	-0,02	-0,04	-0,02	-0,05	-0,03	-0,07	-0,05	-0,10
U _a ≤ 1,8	-0,04	-0,06	-0,06	-0,08	-0,08	-0,11	-0,10	-0,15
				J _f ≤ 2,0 W/ elstahl/Kun				
Verglasungstyp	Edelstahl	Kunststoff	Edelstahl	Kunststoff	Edelstahl	Kunststoff	Edelstahl	Kunststoff
$U_g = 2,8 \text{ (z.B. 2-Lu)}$	-0,02	-0,04	-0,03	-0,05	-0,03	-0,07	-0,06	-0,11
U _g ≤ 1,8	-0,03	-0,05	-0,04	-0,07	-0,06	-0,09	-0,08	-0,13
				J _f ≤ 2,8 W/ elstahl/Kun				
Verglasungstyp	Edelstahl	Kunststoff	Edelstahl	Kunststoff	Edelstahl	Kunststoff	Edelstahl	Kunststoff
U _g = 2,8 (z.B. 2-Lu)	-0,02	-0,04	-0,02	-0,05	-0,03	-0,07	-0,05	-0,10
U _a ≤ 1,8	-0,03	-0,05	-0,04	-0,07	-0,05	-0,09	-0,07	-0,13
				J _f ≤ 3,5 W/ elstahl/Kun				
Verglasungstyp	Edelstahl	Kunststoff	Edelstahl	Kunststoff	Edelstahl	Kunststoff	Edelstahl	Kunststoff
U _a ≤ 2,8	-0,05	-0,08	-0,06	-0,11	-0,09	-0,15	-0,13	-0,21

Tab. 20: Fenster-U-Werte / Zusatztabelle Randverbund / Zuschläge gegenüber Aluminium-Randverbund (nach: [Kehl 2000])

Tab. 21: Definition der Wandkonstruktionen in Zusatztabelle 1

4.3 Wärmeverluste von Rohrleitungen

		Wä	rmeve	rlustko	effizien	ten für	ärmeverlustkoeffizienten für gedämmte Rohrleitungen	mte Ro	hrleitu	ngen					
	Außendurchmesser	m m	10	12	15	18	22	28	35	42	54	64	92	89	108
Kupferrohre	Außendurchmesser x Wanddicke	E E	10 × 0,6	12 x 1	15 x 1	18 x 1	22 × 1	28 x 1,5	35 x 1,5	42 x 1,5	54 x 2	64 x 2	76 x 2	89 x 2	108 x 2,5
Mittelschwore	Nennweite	N i	ဖ	ω :		10	15	50	25	32	40	20	65	80	100
Gewinderohre		Zo	1/8 1/8	1/4		3/8	1/2	3/4	<u>.</u> į	1 1/4"	1 1/2	. 5	2 1/2"		4 ;
DIN 2440	σ.	E	6,2	ω ; ω ;		12,5	16,0	21,6	27,2	35,9	41,8	53,0	8,8	80,8	105,3
	da	шш	10,2	13,5		7,7	21,3	56,9	33,7	42,4	48,3	60,3	76,1	88,9	114,3
	Temperaturdifferenz	z					Wärme	Wärmeverlustkoeffizient k _R in	oeffizier	ոt k _R in V	W/(mK)				
	10 K		0,288	0,334	0,401	0,465	0,549	0,670	908'0	0,938	1,158	1,336	1,547	1,765	2,085
+###	20 K		0,407	0,474	0,573	699'0	0,795	0,977	1,185	1,387	1,727	2,004	2,334	2,678	3,184
ungedallin	40 K		0,635	0,745	0,908	1,068	1,277	1,586	1,938	2,286	2,872	3,354	3,931	4,535	5,429
	60 K		0,882	1,040	1,274	1,505	1,808	2,257	2,773	3,284	4,148	4,862	5,718	6,617	7,951
Dämmstärke	Ħ						Wärme	Wärmeverlustkoeffizient k _R in	oeffizier	ոt k _R in V	W/(mK)				
	0,035 W/(m K)		0,158	0,175	0,200	0,225	0,257	0,305	0,360	0,414	0,507	0,585	0,678	0,776	0,923
10 mm	0,040 W/(m K)		0,176	0,194	0,222	0,249	0,284	0,336	0,397	0,456	0,558	0,643	0,745	0,853	1,013
	0,050 W/(m K)		0,207	0,229	0,261	0,292	0,333	0,393	0,463	0,532	0,649	0,747	0,864	0,989	1,174
	0,035 W/(m K)		0,123	0,135	0,151	0,166	0,187	0,216	0,250	0,283	0,340	0,386	0,442	0,500	0,588
20 mm	0,040 W/(m K)		0,139	0,152	0,170	0,187	0,210	0,243	0,281	0,318	0,380	0,432	0,494	0,560	0,657
	0,050 W/(m K)		0,169	0,184	0,206	0,227	0,254	0,293	0,338	0,382	0,457	0,519	0,593	0,671	0,786
	0,035 W/(m K)		0,106	0,115	0,127	0,139	0,155	0,177	0,202	0,226	0,267	0,300	0,341	0,383	0,445
30 mm	0,040 W/(m K)		0,120	0,130	0,144	0,158	0,175	0,200	0,228	0,255	0,301	0,339	0,384	0,431	0,501
	0,050 W/(m K)		0,148	0,160	0,177	0,193	0,214	0,244	0,278	0,311	0,367	0,412	0,467	0,524	609'0
	0,035 W/(m K)		960'0	0,103	0,113	0,123	0,136	0,154	0,174	0,193	0,226	0,252	0,284	0,317	0,366
40 mm	0,040 W/(m K)		0,109	0,117	0,129	0,140	0,154	0,174	0,197	0,219	0,256	0,285	0,321	0,359	0,414
	0,050 W/(m K)		0,134	0,145	0,159	0,172	0,190	0,214	0,242	0,269	0,313	0,350	0,393	0,439	0,506
	0,035 W/(m K)						0,123	0,138	0,155	0,172	0,199	0,221	0,247	0,275	0,315
20 mm	0,040 W/(m K)							0,157	0,176	0,195	0,226	0,251	0,281	0,312	0,357
	0,050 W/(m K)						0,173	0,194	0,218	0,241	0,278	0,309	0,345	0,383	0,439
	0,035 W/(m K)							0,128	0,142	0,157	0,180	0,199	0,222	0,245	0,280
90 mm	0,040 W/(m K)							0,145	0,162	0,178	0,205	0,226	0,252	0,279	0,318
	0,050 W/(m K)							0,180	0,200	0,220	0,253	0,280	0,311	0,344	0,392
,	0,035 W/(m K)								0,125	0,136	0,155	0,170	0,188	0,207	0,234
80 mm	0,040 W/(m K)								0,142	0,155	0,177	0,194	0,214	0,235	0,266
	0,050 W/(m K)								0,1/6	0,192	U,219	0,240	0,265	0,291	0,329
	0,035 W/(m K)									0,123	0,139	0,152	0,167	0,182	0,204
100 mm	0,040 W/(m K)									0,140	0,158	0,173	0,190	0,207	0,233
	0,050 W/(m K)									0,174	0,197		0,236	0,257	0,289
				An	forderun	gen der	Anforderungen der EnEV (bzw. HeizAnIV) für den jeweiligen	zw. Heiz	:AnlV) fü	ir den je	veiligen		Rohrdurchmesser	<u>ier</u>	
20 mm	0,035 W/(m K)		0,123	0,135	0,151	0,166	0,187								
30 mm								0,177	0,202						
= Rohrdurchmesser										0,188	0,191	0,192	0,193	0,194	
100 mm	0,035 W/(m K)														0,204
Randbedingung: Wä	Randbedingung: Wärmeübergangskoeffizient außen für gedämmte Leitungen: 8 W/(m²k)	für ged	ämmte Le	tungen: 8	$W/(m^2K)$										3
)

Tab. 22: Wärmeverlustkoeffizienten von Rohrleitungen für unterschiedliche Rohrdurchmesser und Dämmstandards

4.4 Kesselnutzungsgrade für Software-Anwendungen

In den [EPHW 1997] Tabellen 2-2 b,c,d und 2-12 a,b sind Nutzungsgrade von Wärmeerzeugern mit konstanter Betriebstemperatur für bestimmte Auslastungen a angegeben. Die tabellierten Nutzungsgrade stellen Hilfsmittel für die Bearbeitung von Hand oder in einer Tabellenkalkulation dar. Für Software-Anwendungen kann die den Werten zugrundeliegende Formel aus der VDI 2067 Blatt 1 direkt verwendet werden. Damit ist - neben der bisher schon zugelassenen Interpolation von Tabellenwerten - auch eine genauere Berechnung möglich.

$$\eta_t = \frac{\eta_K \cdot f_S}{\left(\frac{1}{a} - 1\right) q_B + 1}$$
 [-]

 η_t Kesselnutzungsgrad in der Bereitschaftszeit b_t

 η_{K} Kesselwirkungsgrad

f_S Faktor für Verschmutzung innerhalb der Wartungsperiode

q_B Betriebsbereitschaftsverlust

Dabei ist die Auslastung a wie folgt definiert:

$$a = \frac{b_{VH}}{b_t} = \frac{Q_t}{\dot{Q}_{Max} \cdot b_t} \qquad [-]$$

b_{VH} Vollbetriebszeit [h/a]

b_t Bereitschaftszeit [h/a]

Q_t vom Kessel innerhalb der Bereitschaftszeit b_t gelieferte Nutzwärme [kWh/a]

Q_{max} Nennwärmeleistung des Kessels [kW]

Mit den in der folgenden Tabelle aufgelisteten Werten für η_K und q_B wurden die EPHW-Tab.2-2(a-d) Tab. 2-12(a,b) ermittelt.

Berechnungsgrundlage für die Tabellen 2-2 und 2-12			Kes	selwirku	ngsgrad	еηκ			schafts- ste q _s
Formel nach VDI 2067 Bl. 1				Bau	jahr			Вац	ijahr
			bis 1978	1		ab 1979		bis 1978	ab 1979
Kesselbauart	Leistung in kW	Gas	ÖI	Fest	Gas	ÖI	Fest		
Vorrats-Wasserheizer	< 20	0,83			0,84			0,040	0,035
Umlauf-Gas-Wasserheizer	< 37	0,82			0,86			0,020	0,010
Gas-Spezialkessel mit Brenner ohne Gebläse		0,82			0,86			0,045	0,025
automatischer Spezialkessel mit Gebläse	< 50	0,84	0,84	0,78	0,87	0,87	0,82	0,045	0,025
Umstell- und Wechselbrandkessel		0,81	0,81	0,76	0,85	0,85	0,79	0,055	0,035
Gas-Spezialkessel mit Brenner ohne Gebläse		0,84			0,88			0,035	0,020
automatischer Spezialkessel mit Gebläse	> 50 bis 120	0,86	0,86	0,80	0,89	0,89	0,85	0,035	0,020
Umstell- und Wechselbrandkessel		0,82	0,82	0,78	0,86	0,86	0,82	0,033	0,020
Gas-Spezialkessel mit Brenner ohne Gebläse		0,86			0,89			0,020	0,010
automatischer Spezialkessel mit Gebläse	> 120 bis 350	0,88	0,88	0,82	0,90	0,90	0,86	0,020	0,010
Umstell- und Wechselbrandkessel		0,84	0,84	0,80				0,030	
Gas-Spezialkessel mit Brenner ohne Gebläse		0,88			0,89			0,016	0,010
automatischer Spezialkessel mit Gebläse	> 350 bis 1200	0,89	0,89	0,85	0,90	0,90	0,86	0,018	0,010
Niedertemperaturkessel mit Brenner ohne Gebläse					0,92				0,009
Niedertemperaturkessel mit Gebläse	< 50				0,93	0,93			0,006
Brennwertkessel					0,98	0,94			0,012
Niedertemperaturkessel mit Brenner ohne Gebläse					0,92				0,005
Niedertemperaturkessel mit Gebläse	> 50 bis 120				0,93	0,93			0,005
Brennwertkessel					0,99	0,95			0,008
Niedertemperaturkessel mit Brenner ohne Gebläse					0,92				0,004
Niedertemperaturkessel mit Gebläse	> 120 bis 350				0,93	0,93			0,004
Brennwertkessel					0,99	0,95			0,005
Niedertemperaturkessel mit Brenner ohne Gebläse					0,92				0,004
Niedertemperaturkessel mit Gebläse	>350 bis 1200				0,93	0,93			0,004
Brennwertkessel					0,99	0,95			0,003

Standard-Faktoren für Verschmutzung f_s = 1,0 (Gas), 0,98 (ÖI) und 0,97 (Festbrennstoffe)

Verglichen mit anderen Literaturstellen und Hersteller-Angaben erscheinen die Werte der VDI 2067 für die Bereitschaftsverluste q_B eher hoch. Für differenziertere Betrachtungen sei auf VDI 3808 und [Schneider 1994] verwiesen.

Zu beachten ist, dass die Werte für η_K und q_B gemäß VDI 2067 für eine Kesseltemperatur von 80°C gelten. Für gleitende Kesseltemperaturen (Niedertemperatur- und Brennwertkessel) sind η_K und q_B im Jahresverlauf nicht konstant. Gemäß VDI 2067 werden sie auf die mittlere Temperatur des Wärmeträgers bezogen, was aber - zumindest bei Brennwertkesseln - nur sehr ungenaue Aussagen erlaubt. Die in obiger Tabelle angegebenen Werte sind dagegen als Mittelwerte über die Heizzeit bzw. über das Jahr zu verstehen. Mit diesen Hilfsgrößen wurde [EPHW] Tab. 2-2a berechnet, die Werte entsprechen jedoch nicht exakt den Hersteller-Angaben nach DIN 4702 (Kessel-Temperatur 40 K über Umgebungstemperatur).

Für die Warmwasserbereitung außerhalb der Heizzeit darf die obige Formel im Fall von Niedertemperaturund Brennwertkesseln nicht verwendet werden, da hier der diskontinuierliche Betrieb dominiert. Nutzungsgrade für reinen Warmwasserbetrieb werden nach DIN 4702 Teil 8 für typische Zapfraten ermittelt und sollten beim Kessel-Hersteller erfragt werden. Typische Werte können folgender Tabelle entnommen werden (vgl. z.B. Stiftung Warentest test-Heft 9/98):

Kessel-Nutzungsgrad Warmwasserbereitung ηwεaußerhall) Heizzeit
Niedertemperatur- und Brennwert-Kessel (Erdgas, Heizöl)	0,65
Brennwertkessel (Erdgas) bei Warmwasser-Temperaturen unter 55°C	0,70

Tab. 23: Kessel-Nutzungsgrade für die Bereitstellung von Trinkwarmwasser außerhalb der Heizzeit bei gleitender Kesseltemperatur (Quelle: test 9/98)

Für differenziertere Betrachtungen im Bereich der Wärmeerzeuger wird folgende Vorgehensweise empfohlen:

- Erfolgt die Warmwasserbereitung über den Heizkessel (Kombi-Betrieb), so sollte generell zwischen Betrieb in der Heizzeit und im Sommer unterschieden werden.
- Steht der Wärmeerzeuger im beheizten Bereich, kann für die Dauer der Heizzeit mit q_B = 0 gerechnet werden.

4.5 Standardwerte für Energiegehalt und Dichte von Brennstoffen

Liegen für ein Gebäude Angaben über die jährlich verbrauchte Brennstoffmenge vor, so kann über folgende Heizwerte eine Umrechnung in die verbrauchte Energie vorgenommen werden. Dabei handelt es sich um typische Werte - in der Praxis sind zum Teil erhebliche Streuungen möglich (insbes. beim Energieträger Holz). Generell wird im Energiepaß Heizung/Warmwasser wie auch in den einschlägigen Normen und Richtlinien als Bezugsbasis der untere Heizwert H_u verwendet.

	Heizwer	te und Dichte	e von Brennst	offen
	unterer Heizwert H _u	oberer Heizwert (Brennwert) H _o	Dichte	Umrechnung gebräuchlicher Volumeneinheiten in kWh (H _u)
Brennstoffe	[kWl	n/kg]	[kg/m³]	
Heizöl EL	11,8	12,7	860	1 Liter = 10,2 kWh
Erdgas H	13,7	15,0	0,76 1)	1 m _N ³ = 10,4 kWh
Erdgas L	11,7	12,8	0,76 1)	1 m _N ³ = 8,9 kWh
Flüssiggas	12,8	13,9	2,36 1)	1 m _N ³ = 30,2 kWh
Steinkohle	8,7	9,0	760 ²⁾	1 m³ = 6600 kWh
Braunkohle	5,5	5,9	700 / 1000 ³⁾	1 m³ = 3900 / 5500 kWh
Brennholz	3,6 / 4,1 ⁴⁾	4,1 / 4,7 ⁴⁾	420 / 560 ⁵⁾	1 rm = 1700 / 2300 kWh
Holz-Hackschnitzel	4,6 6)	5,1 6)	185 ⁷⁾	1 Scbm = 850 kWh
Holz-Pellets	4,9		1200 / 650 ⁸⁾	1 Scbm = 3200 kWh

Quellen:

GEMIS 3.1, Recknagel/Sprenger

Anmerkungen:

neue Bezeichnungen nach DIN EN 437: H_i statt H_u / H_s statt H_o

neue Bezeichnungen nach Gas-Geräte-Richtlinie: "Erdgas E" statt "Erdgas H" / "Erdgas LL" statt "Erdgas L"

Tab. 24: Heizwerte und Dichte von Brennstoffen

(Quellen: GEMIS 3.0; Recknagel/Sprenger)

 $^{^{1)}}$ bezogen auf Normkubikmeter (m_N^3)

²⁾ Schüttdichte Nüsse/Eierbriketts

³⁾ Briketts geschüttet / gesetzt

⁴⁾ bei Feuchtegehalt 30% (1 Jahr Freiluftlagerung) / 20 % (lufttrocken)

Je Erhöhung um 10% Feuchteanteil ergibt sich Abnahme des Heizwertes um ca. 0,5 kWh/kg.

Weichholz (Nadelholz) / Hartholz (Buche); bezogen auf Raummeter (1 rm = 1 ster; ca. 25% Raumanteil Luft) für lufttrockenes Holz

bei Feuchtegehalt 20% (lufttrocken)

⁷⁾ Schüttdichte, bezogen auf Schüttkubikmeter Schm

⁸⁾ Einzelpellet / Schüttdichte

4.6 Aktualisierung der Primärenergie- und CO₂-Emissionsfaktoren

Auf der Basis der aktuellen GEMIS-Version 3.0 (Stand Dezember 1997) wurden die Primärenergie- und CO₂-Emissionsfaktoren für verschiedene Energieträger neu berechnet. Diese können der folgenden Neufassung von [EPHW 1997] Tabelle 3-1 entnommen werden:

Prin	närenergie- und CC	O ₂ -Emissionsfak	toren
		Primär- energie- Faktor	CO2- Äquivalent- Emissionsfaktor ¹⁾
Enden	ergieträger	kWh _{Prim} / kWh _{End}	g / kWh _{End}
	Heizöl EL	1,10	297
	Erdgas	1,07	232
Brennstoffe 2)	Flüssiggas	1,09	257
	Steinkohle	1,07	410
	Braunkohle	1,20	455
	Brennholz	1,01	55
	Holzhackschnitzel	1,06	33
	Holz-Pellets	1,10	41
Strom	Strom-Mix	2,97	689
	70 % KWK	0,71	214
"Fernwärme" 3)	35 % KWK	1,10	306
	0 % KWK	1,49	398
	70 % KWK	0,62	-84
"Nahwärme" ⁴⁾	35 % KWK	1,03	113
	0 % KWK	1,43	311

berechnet mit GEMIS 3.1

Bilanziert wurde die vorgelagerte Kette für die Endenergie bis zur Übergabe im Gebäude.

(Zwischenwerte können interpoliert werden)

Tab. 25: Primärenergie- und CO2-(Äquivalent-)Emissionsfaktoren

(Quelle: Gemis 3.0/3.1)

klimawirksame Emissionen (CO₂, CH₄, CO, NMVOC, NO_x, N₂O) ausgedrückt in CO2-Äquivalenten (Bilanzzeitraum 100 Jahre)

²⁾ Bezugsgröße: unterer Heizwert H_u

³⁾ Steinkohle-Kondensationskraftwerk (= Anteil KWK) + Heizöl-Spitzenkessel

⁴⁾ Erdgas-BHKW (=Anteil KWK) + Erdgas-Spitzenkessel

Anhang A Literatur

[Eicke-Hennig/Siepe 1997] Eicke-Hennig, Werner; Siepe, Benedikt: Die Heizenergie-Einspar-

möglichkeiten durch Verbesserung des Wärmeschutzes typi-

scher hessischer Wohngebäude; IWU, Darmstadt 1997

[EPHW 1997] Loga, Tobias; Imkeller-Benjes, Ulrich: Energiepaß

Heizung/Warmwasser. Energetische Qualität von Baukörper und

Heizungssystem; Institut Wohnen und Umwelt, Darmstadt 1997

[GEMIS 1997] Fritsche, U.R.: Gesamt-Emissions-Modell integrierter Systeme

(**GEMIS**) - Version 3.0; Ökoinstitut Darmstadt/Freiburg/Berlin; Hrsg.: Hessisches Ministe-rium für Umwelt, Energie, Jugend, Familie und

Ge-sundheit; Frankfurt/M. 1997

[IWU 1998] Vereinfachungen für den Anwendungsfall "Energie-Kurzbera-

tung" - Ergänzung zum Energiepaß Heizung/Warmwasser; IWU-

Arbeitspapier vom 8.4.98

[IWU 2001] Loga, T.; Diefenbach, N.; Born, R.: Guter Ansatz - schwache Stan-

dards: die neue Energieeinsparverordnung; Stellungnahme zum Referentenentwurf vom 29. November 2000 bzw. Kabinettsbeschluss

vom 7. März 2001; IWU, Darmstadt 2001

[Kehl 2000] Kehl, Daniel: Energetische Klassifizierung von Fenstern. Quantifi-

zierung von Wärmebrücken für typische Fenster und Einbau-

situationen; IWU, Darmstadt 2000

[LEG] Leitfaden Energiebewußte Gebäudeplanung; Hrsg. Hessisches

Umweltministerium; Wiesbaden 1993/1999

[Loga/Kahlert/Laidig/Lude 1999] Loga, T.; Kahlert, C.; Laidig, M.; Lude, G.: Räumlich und zeitlich

eingeschränkte Beheizung. Korrekturfaktoren zur Berücksichti-

gung in stationären Bilanzverfahren; IWU, Darmstadt 1999

[Loga/Born 1999] Bewertungsraster für die Energie-Effizienz von Gebäuden. Unter-

suchung im Auftrag der Landeshauptstadt Hannover; IWU, Darmstadt

1999 (45 Seiten)

Anhang B Klimadaten für verschiedene Standorte in Deutschland

Die folgenden Klimadaten sind dem "Leitfaden Energiebewußte Gebäudeplanung - Heizenergie im Hochbau" [LEG 1999] entnommen (Quelle: Deutscher Wetterdienst, Zentralamt Offenbach).

Die Monatswerte der Gradtagszahlen gelten für das Monatsverfahren des [LEG 1999] (identisch mit [SIA 380/1]). Für auf EN 832 basierende Monatsbilanzen können die in DIN V 4108-6 : 2000 Anhang A abgedruckten mittleren monatlichen Außentemperaturen verwendet werden.

Kassel

				mon	natliche	e Glob	alstral	nlung i	n kWh	/m²			Jahres- summe in kWh/(m²a)	Summe an H in kWh/(m²a bei Heizgren)
Fläche	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ		12° C	15° C
HORIZONTAL	21	40	65	108	142	141	144	126	87	50	23	15	962	362	553
SÜD	29	59	66	83	85	76	80	86	80	63	32	21	760	368	503
OST	13	26	41	67	83	81	83	75	52	32	15	9	578	225	338
WEST	14	28	44	66	82	80	83	73	55	34	16	10	585	234	347
NORD	10	15	26	37	50	55	55	44	30	18	10	7	358	138	207
SÜD 30	29	59	80	122	147	140	144	136	105	68	32	21	1082	447	654
SÜD 45	31	64	82	120	140	130	136	132	106	72	34	22	1069	459	661
SÜD 60	32	65	80	113	126	116	121	122	102	73	35	23	1008	449	636
OST 45	18	36	57	96	124	121	124	110	75	45	20	13	840	320	485
WEST 45	19	38	60	95	121	120	123	108	78	46	22	14	845	327	493
NORD 45	14	20	35	54	89	99	99	72	40	24	14	10	571	199	312

Bad Lippspringe

				mor	atlich	e Glob	alstral	nlung ir	า kWh	/m²			Jahres- summe in kWh/(m²a)	Summe an H in kWh/(m²a bei Heizgren)
Fläche	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ		12° C	15° C
HORIZONTAL	19	42	65	108	134	136	145	124	77	48	24	15	936	361	544
SÜD	27	60	65	83	80	73	81	84	72	61	33	21	741	367	496
OST	12	26	41	67	79	77	84	73	46	31	15	9	561	224	332
WEST	13	29	44	66	78	77	82	72	49	32	16	10	569	233	341
NORD	9	15	26	37	48	53	55	43	26	18	11	7	348	137	204
SÜD 30	27	60	80	122	139	134	145	134	93	66	33	20	1053	446	644
SÜD 45	29	66	82	120	132	125	136	130	94	70	36	22	1041	458	651
SÜD 60	29	67	80	112	119	111	122	119	91	70	37	23	980	447	626
OST 45	17	36	58	96	116	117	124	108	66	43	21	13	816	319	477
WEST 45	18	39	60	95	114	115	123	106	69	45	22	14	821	326	485
NORD 45	12	20	35	54	84	96	99	71	35	24	15	10	556	198	307

Gießen

				mor	atlich	e Glob	alstral	nlung ii	n kWh	/m²			Jahres- summe in kWh/(m²a)	Summe an F in kWh/(m²a bei Heizgren)
Fläche	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ		12° C	15° C
HORIZONTAL	21	42	68	116	136	147	157	128	88	49	22	15	989	368	553
SÜD	30	61	68	88	79	77	85	84	82	60	32	22	768	375	502
OST	13	28	42	72	80	84	89	75	53	30	14	10	592	230	339
WEST	14	29	45	72	79	84	89	74	56	33	15	11	602	239	349
NORD	10	15	26	38	48	56	58	43	29	18	9	7	357	135	200
SÜD 30	30	61	83	132	140	146	157	138	107	66	31	22	1111	457	657
SÜD 45	32	66	85	129	133	135	147	133	109	70	34	23	1096	468	663
SÜD 60	33	68	83	121	120	119	130	121	105	70	34	23	1028	457	638
OST 45	19	38	60	104	118	127	133	111	76	43	19	13	860	325	485
WEST 45	20	39	62	102	117	125	135	110	79	45	20	14	870	333	494
NORD 45	13	20	35	58	87	105	107	73	38	23	13	10	614	230	338

Geisenheim

				mor	atlich	e Glob	alstral	nlung ii	n kWh	/m²			Jahres- summe in kWh/(m²a)	Summe an H in kWh/(m²a bei Heizgren)
Fläche	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ		12°C	15° C
HORIZONTAL	22	40	69	115	141	150	151	131	90	49	24	17	1000	331	507
SÜD	32	59	69	87	82	78	81	86	83	59	35	27	778	353	478
OST	14	28	44	74	83	86	87	78	56	31	16	11	607	212	318
WEST	15	28	46	72	82	84	87	76	56	33	17	12	607	217	322
NORD	10	14	26	38	49	57	54	43	28	18	10	8	355	121	182
SÜD 30	31	59	85	129	146	149	151	140	109	66	35	26	1125	419	612
SÜD 45	34	64	86	128	137	138	140	136	111	70	38	28	1110	433	621
SÜD 60	35	66	84	119	123	122	126	124	107	70	39	29	1043	426	600
OST 45	19	37	61	104	123	129	129	115	79	43	22	15	877	296	450
WEST 45	20	38	63	102	122	128	130	111	80	46	22	16	876	300	453
NORD 45	14	18	34	58	90	107	103	75	37	24	14	11	583	173	274

Mannheim

				mor	atlich	e Glob	alstral	nlung ii	n kWh	/m²			Jahres- summe in kWh/(m²a)	Summe an I in kWh/(m²a bei Heizgren)
Fläche	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ		12°C	15°C
HORIZONTAL	24	43	70	116	143	150	153	131	96	54	28	18	1026	328	490
SÜD	34	64	69	87	83	78	82	86	89	65	42	29	809	358	478
OST	15	30	45	74	84	85	87	79	59	34	19	12	624	211	309
WEST	16	31	46	73	84	85	88	76	60	37	20	13	627	217	316
NORD	10	15	26	38	50	57	55	44	30	20	12	8	364	120	176
SÜD 30	34	64	85	130	146	148	153	141	117	72	41	28	1160	420	600
SÜD 45	37	69	87	128	139	137	143	136	119	76	45	30	1147	435	612
SÜD 60	38	71	85	120	125	121	127	124	114	76	46	32	1080	431	595
OST 45	21	40	62	104	125	129	131	116	85	48	26	17	902	295	438
WEST 45	22	41	64	102	123	128	132	112	85	50	26	17	901	298	440
NORD 45	15	20	35	58	91	106	104	75	39	26	16	11	595	172	262

Würzburg

				mor	natlich	e Glob	alstrał	nlung ii	n kWh	/m²			Jahres- summe in kWh/(m²a)	Summe an H in kWh/(m²a bei Heizgren)
Fläche	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ		12°C	15° C
HORIZONTAL	26	45	76	120	145	157	159	135	97	57	28	19	1062	397	595
SÜD	38	65	76	91	84	81	85	89	90	69	41	30	840	415	555
OST	16	30	47	74	85	89	89	79	57	34	18	13	632	245	363
WEST	18	32	51	74	85	89	93	79	62	40	19	13	654	260	380
NORD	11	16	29	38	51	58	57	45	31	20	12	9	376	145	213
SÜD 30	37	66	94	135	149	155	159	145	118	76	40	29	1201	498	714
SÜD 45	40	71	96	133	141	144	149	140	119	81	44	31	1188	514	725
SÜD 60	41	73	94	124	127	127	132	128	115	81	45	33	1119	505	700
OST 45	23	41	67	106	126	134	134	117	83	48	25	17	920	350	520
WEST 45	24	42	70	105	125	134	138	116	87	54	26	18	939	361	535
NORD 45	16	22	38	59	92	110	107	76	40	27	16	12	614	210	324

Trier

				mon	atliche	e Globa	alstrah	nlung ir	n kWh	/m²			Jahres- summe in kWh/(m²a)	Summe an H in kWh/(m²a bei Heizgren)
Fläche	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ		12° C	15° C
HORIZONTAL	20	43	75	114	152	152	173	142	92	56	27	17	1063	362	559
SÜD	27	55	65	71	71	64	75	81	73	63	34	24	703	332	448
OST	12	24	38	62	77	72	83	73	47	28	14	8	538	190	289
WEST	13	27	44	61	76	74	86	75	52	36	17	9	570	209	313
NORD	8	13	23	34	44	47	47	38	25	17	10	6	312	113	170

Stuttgart

				mon	atlich	e Glob	alstrah	nlung ir	า kWh	/m²			Jahres- summe in kWh/(m²a)	Summe an H in kWh/(m²a bei Heizgren)
Fläche	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ		12°C	15° C
HORIZONTAL	29	46	80	113	151	152	171	145	99	63	34	22	1105	377	565
SÜD	43	57	68	69	70	62	72	80	79	71	50	40	761	374	489
OST	16	26	43	61	77	74	82	76	53	34	18	14	574	205	303
WEST	17	28	45	59	73	74	85	75	53	37	21	15	582	214	311
NORD	10	14	25	33	43	47	46	38	26	17	10	8	317	114	167

Freiburg

				mor	atlich	e Glob	alstral	nlung ir	า kWh	/m²			Jahres- summe in kWh/(m²a)	Summe an F in kWh/(m²a bei Heizgren)
Fläche	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ		12° C	15° C
HORIZONTAL	28	45	81	112	149	162	179	153	104	65	31	23	1132	347	523
SÜD	41	55	69	67	67	64	74	84	82	72	45	39	759	343	454
OST	16	27	45	61	75	78	86	79	55	37	18	15	592	195	288
WEST	16	26	43	57	72	74	84	77	54	37	18	15	573	189	278
NORD	10	14	24	32	42	46	46	37	25	17	10	8	311	104	152

Wahnsdorf (b. Dresden)

				mon	atliche	e Globa	alstrah	nlung ir	ı kWh	/m²			Jahres- summe in kWh/(m²a)	Summe an I in kWh/(m²a bei Heizgrer	ı)
Fläche	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ		12° C	15° C
HORIZONTAL	24	42	73	109	149	148	159	131	85	60	27	18	1025	380	551
SÜD	41	56	64	69	71	62	70	77	70	79	46	35	740	387	495
OST	16	29	44	60	79	75	78	71	48	37	17	11	565	226	319
WEST	16	27	42	62	75	75	80	71	48	38	17	10	561	222	314
NORD	9	14	24	34	39	46	43	35	23	15	8	6	296	116	164

Weihenstephan

				mon	atlich	e Glob	alstrah	nlung ir	ı kWh	/m²			Jahres- summe in kWh/(m²a)	Summe an H in kWh/(m²a bei Heizgren)
Fläche	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ		12°C	15° C
HORIZONTAL	30	51	84	119	160	156	174	149	101	65	31	22	1142	496	694
SÜD	41	62	71	72	72	63	73	82	80	73	42	34	765	435	545
OST	16	28	45	64	82	75	87	78	53	36	16	13	593	265	366
WEST	18	32	48	64	77	74	82	73	55	38	19	14	594	277	376
NORD	10	16	26	35	45	48	49	39	27	18	10	8	331	149	205

Gelsenkirchen

				mor	atlich	e Globa	alstrah	nlung ir	ı kWh	/m²			Jahres- summe in kWh/(m²a)	Summe an H in kWh/(m²a bei Heizgren)
Fläche	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ		12° C	15° C
HORIZONTAL	19	36	67	107	141	134	149	123	74	51	23	14	938	314	487
SÜD	30	47	56	67	68	58	68	69	55	60	34	21	633	295	400
OST	12	22	37	61	72	67	77	66	42	32	14	8	510	181	274
WEST	12	22	36	55	67	65	74	60	39	29	14	8	481	172	259
NORD	7	12	22	34	41	45	48	38	24	16	8	5	300	102	156

Hamburg

				mor	atlich	e Globa	alstrah	nlung ir	า kWh	/m²			Jahres- summe in kWh/(m²a)	Summe an I in kWh/(m²a bei Heizgren	i)
Fläche	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ		12°C	15°C
HORIZONTAL	16	32	61	103	150	141	147	124	78	48	20	11	931	378	579
SÜD	27	46	56	68	77	64	70	75	64	59	34	19	659	350	470
OST	11	21	35	60	84	74	78	68	45	29	14	7	526	225	336
WEST	11	22	36	57	79	72	77	66	43	29	13	7	512	220	327
NORD	6	11	20	32	46	47	49	37	24	15	7	4	298	122	185

Potsdam

				mon	atlich	e Glob	alstrah	nlung ir	n kWh	/m²			Jahres- summe in kWh/(m²a)	Summe an H in kWh/(m²a bei Heizgren)
Fläche	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ		12°C	15° C
HORIZONTAL	18	34	67	106	152	147	160	133	86	55	22	14	994	377	538
SÜD	30	47	62	70	75	64	74	80	70	68	34	23	697	352	457
OST	11	22	39	58	81	77	85	70	48	33	13	8	545	210	303
WEST	12	23	38	56	74	72	81	71	48	33	14	8	530	208	297
NORD	7	11	21	31	42	46	48	37	25	16	8	5	297	113	163

Kiel-Kronshagen (WST)

Kiel-Kronshagen	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	29	20	4	1	0	9	26	30	31	239
HGT 20/12	599	545	526	393	206	36	6	4	86	287	437	546	3671
HT 15	31	28	31	30	28	15	10	10	23	30	30	31	298
HGT 20/15	599	545	526	400	261	105	65	62	176	319	438	546	4042

Warnemünde (WST)

Warnemünde	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	29	21	3	0	0	6	26	30	31	236
HGT 20/12	616	559	536	406	225	29	2	1	58	284	443	557	3716
HT 15	31	28	31	30	29	15	7	7	21	31	30	31	292
HGT 20/15	616	559	536	413	274	107	44	40	156	318	444	557	4064

Hamburg-Fuhlsbüttel (Flughafen)

Hamburg	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	28	18	4	1	1	10	26	30	31	238
HGT 20/12	608	549	517	377	186	36	8	9	95	297	449	558	3689
HT 15	31	28	31	29	27	14	10	11	22	31	30	31	295
HGT 20/15	608	549	517	385	242	102	67	69	174	327	450	558	4048

Bremen (Flugwetterwarte)

Bremen	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	27	15	3	1	1	8	25	30	31	230
HGT 20/12	594	533	497	348	151	27	7	5	77	284	444	546	3513
HT 15	31	28	31	29	25	13	9	9	22	30	30	31	287
HGT 20/15	594	533	497	362	216	90	55	55	165	318	445	546	3876

Potsdam

Potsdam	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	26	14	3	1	1	9	25	30	31	229
HGT 20/12	648	569	517	343	142	27	6	5	92	300	473	594	3716
HT 15	31	28	31	29	23	10	7	8	20	30	30	31	277
HGT 20/15	648	569	518	360	201	69	43	49	160	334	473	594	4018

Hannover-Langenhagen (Flugwetterwarte)

Hannover	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	27	16	4	1	1	9	25	30	31	233
HGT 20/12	605	545	506	353	163	37	9	7	89	290	449	559	3612
HT 15	31	28	31	29	25	13	9	9	22	30	30	31	289
HGT 20/15	605	545	506	368	224	93	60	59	170	326	451	559	3966

Düsseldorf (Südfriedhof)

Düsseldorf	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	24	11	2	0	0	5	20	29	31	212
HGT 20/12	550	480	438	286	108	17	2	3	49	220	410	512	3075
HT 15	31	28	31	28	21	10	6	5	16	29	30	31	267
HGT 20/15	550	480	440	314	175	70	38	33	119	281	414	512	3426

Köln-Wahn (Flugwetterwarte)

Köln-Wahn	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	25	12	2	0	1	7	22	29	31	218
HGT 20/12	566	483	461	304	120	21	3	5	66	250	424	538	3241
HT 15	31	28	31	29	22	10	7	6	18	29	30	31	273
HGT 20/15	566	483	461	333	186	72	43	39	138	299	430	538	3588

Kassel

Kassel	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	25	13	3	1	1	9	24	30	31	227
HGT 20/12	609	530	483	322	139	28	6	6	83	288	459	570	3522
HGT 18/12	547	473	421	271	113	22	5	5	66	239	399	508	3068
HT 15	31	28	31	29	23	11	8	9	20	30	30	31	282
HGT 20/15	609	530	484	345	204	78	52	55	158	325	460	570	3869
HGT 22/15	671	587	546	403	251	100	68	72	199	385	520	632	4432

Gießen

Gießen	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	26	13	3	0	1	8	25	30	31	226
HGT 20/12	613	532	478	318	131	26	2	7	79	298	465	575	3524
HGT 18/12	551	475	416	267	106	20	1	5	63	248	405	513	3072
HT 15	31	28	31	29	24	11	7	7	20	30	30	31	279
HGT 20/15	613	532	479	340	200	75	43	47	155	333	466	575	3857
HGT 22/15	675	589	541	398	247	96	56	62	195	394	526	637	4414

Geisenheim

Geisenheim	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	23	9	1	0	0	6	24	30	31	214
HGT 20/12	587	504	443	273	94	11	0	2	57	273	442	550	3235
HGT 18/12	525	447	382	227	76	9	0	1	45	226	383	488	2807
HT 15	31	28	31	29	20	8	5	5	17	30	30	31	265
HGT 20/15	587	504	446	309	165	56	29	32	128	315	444	550	3561
HGT 22/15	649	561	508	366	205	72	38	42	162	375	504	612	4091

Frankfurt/Main (Flughafen)

Frankfurt	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	24	10	2	0	0	7	25	30	31	219
HGT 20/12	604	518	461	291	106	15	1	2	66	291	455	567	3378
HGT 18/12	542	461	400	243	85	12	1	1	52	242	396	505	2941
HT 15	31	28	31	29	21	9	5	5	18	30	30	31	268
HGT 20/15	604	518	464	321	175	60	29	32	134	326	457	567	3685
HGT 22/15	666	575	526	379	218	77	38	42	169	386	517	629	4220

Mannheim (Wetterwarte)

Mannheim	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	30	21	8	1	0	0	5	23	30	31	208
HGT 20/12	584	499	432	251	82	10	0	1	46	264	439	551	3159
HT 15	31	28	31	28	18	6	3	4	15	29	30	31	255
HGT 20/15	584	500	437	297	147	43	16	22	113	305	441	551	3456

Trier (Stadt)

Trier	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	24	11	2	0	0	7	23	30	31	218
HGT 20/12	570	493	443	288	109	14	1	3	65	266	432	539	3223
HT 15	31	28	31	29	22	10	5	6	18	30	30	31	271
HGT 20/15	570	493	445	321	182	66	31	39	136	308	434	539	3564

Würzburg (WST)

Würzburg	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	24	12	3	1	1	8	25	30	31	224
HGT 20/12	631	538	474	305	126	26	4	6	78	296	471	587	3542
HT 15	31	28	31	29	22	10	6	7	18	30	30	31	273
HGT 20/15	631	538	477	331	191	72	41	45	142	332	473	587	3860

Dresden-Pillnitz

Dreseden	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	25	13	3	0	0	9	23	29	31	223
HGT 20/12	621	545	492	309	131	26	2	3	86	274	439	568	3496
HT 15	31	28	31	28	22	9	5	7	18	30	30	31	271
HGT 20/15	621	545	494	332	192	67	32	46	148	315	444	568	3804

Nürnberg-Kraftshof (Flugwetterwarte)

Nürnberg	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	27	13	3	1	2	10	26	30	31	232
HGT 20/12	646	551	502	340	139	33	7	14	99	322	482	610	3745
HT 15	31	28	31	29	23	11	7	8	20	31	30	31	280
HGT 20/15	646	551	502	358	200	79	46	56	163	351	483	610	4045

Stuttgart (Wetteramt)

Stuttgart	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	30	22	10	2	0	0	6	22	29	31	212
HGT 20/12	581	496	436	271	104	22	3	4	57	253	433	549	3209
HT 15	31	28	31	28	21	9	5	5	16	29	30	31	263
HGT 20/15	581	497	442	311	173	62	29	34	119	298	437	550	3533

Freiburg i. Br. (Wetteramt)

Freiburg	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	29	20	8	2	0	0	4	20	29	31	203
HGT 20/12	573	483	407	248	87	17	2	1	39	234	424	543	3058
HT 15	31	28	31	28	18	7	3	4	13	28	30	31	252
HGT 20/15	573	484	420	292	151	52	20	25	93	284	430	544	3368

München-Riem (Flugwetterwarte)

München	JAN	FEB	MRZ	APR	MAI	JUN	JUL	AUG	SEP	OKT	NOV	DEZ	Jahr
HT 12	31	28	31	27	16	5	2	2	11	27	30	31	240
HGT 20/12	674	578	517	356	176	52	17	16	110	339	503	633	3971
HT 15	31	28	31	29	25	13	8	10	20	31	30	31	287
HGT 20/15	674	578	518	373	231	103	59	69	168	364	504	633	4274

Bemerkung:

Die Bezugsperiode für die Berechnung der Temperaturdaten ist der Zeitraum von 1951 - 1980.

Aufgrund der eingeschränkten Datenverfügbarkeit basieren die berechneten Daten einiger Stationen auf folgenden Meßzeiträumen:

1958 - 1980 Köln-Wahn

1956 - 1980 Nürnberg Dresden - Pillnitz 1951 - 1975

Anhang C Elektrische Hilfsenergie - Ansätze zur Bestimmung des Strombedarfs von Zentralheizungsanlagen

Autor: Rolf Born, IWU

Der Stromverbrauch der Einzelkomponenten einer Zentralheizungsanlage ist, wenn keine Messungen vorliegen, nur schwer exakt zu ermitteln. Das hat folgende Ursachen:

- Angaben über den Verbrauch im Betrieb finden sich meist weder auf den Geräten, noch in den Herstellerunterlagen.
- Bekannt ist in der Regel nur die aufgenommene Leistung der (größeren) Antriebe.
- Der Verbrauch hängt neben der aufgenommenen Leistung von mehreren Faktoren ab, die im Rahmen einer Energieberatung nicht erhoben werden:
 - Einstellung der Parameter an der Regelung (⇒ z.B. Häufigkeit der Brennerstarts)
 - Nutzerverhalten: Welche Komponenten werten zeitweise abgeschaltet?

Im Rahmen der Energieberatung sollten auch bei der Abschätzung des Hilfsenergieverbrauches immer dann, wenn keine exakten Werte vorliegen, eher pessimistischen Annahmen getroffen werden.

1 Wärmeerzeuger

Der Energiepass Heizung/Warmwasser [EPHW 1997] hat bisher keine Aussage über den Hilfsenergiebedarf der Wärmeerzeuger getroffen, so dass in der Energieberatung entweder projektbezogene Werte oder individuelle Schätzwerte verwendet wurden. Die DIN 4701-10 verwendet, wenn (noch) keine Anlagendaten verfügbar sind, einen nur auf A_N bezogenen Wert, der nicht nach der Art der Wärmeerzeugers unterscheidet. Ein atmosphärischer Gaskessel wird genauso betrachtet wie ein Ölkessel:

$$P_{HE} = 0.015 * \dot{Q}_n^{0.48}$$
 [kW]

P_{HE} Elektrische Leistungsaufnahme des Kessels [kW]

Q_n Nennwärmeleistung des Kessels [kW]

Damit ergibt sich für ein typisches A_N eines EFH von 150 m² (entspricht ca. 120 m² Wohnfläche) ein Hilfsenergiebedarf des Wärmeerzeugers von 166 W. Dieser Wert ist für einen Ölkessel plausibel, für andere Arten von Wärmeerzeugern sollten jedoch Unterscheidungen getroffen werden.

Ölkessel

Auch in den neuesten Herstellerunterlagen fehlen fast immer Angaben zum Hilfsenergieverbrauch. Die einzigen umfassenden Quellen sind deshalb Prüfergebnisse unabhängiger Institute. So hat das Schweizer Bundesamt für Energie in einer Studie aus dem Jahr 1999 den Stromverbrauch einer größeren Anzahl von am Markt erhältlichen Geräten messen lassen [Graf/Nipkow/Messmer 1999]. Dabei zeigt sich eine erhebliche Streuung. So kann bei Geräten mit einer thermischen Leistung kleiner 60 kW der Hilfsenergiebedarf um mehr als den Faktor 4 differieren. Zu erkennen ist, dass Geräte kleinerer Leistung einen deutlich höheren spezifischen Hilfsenergiebedarf haben. Ursache ist der schlechte Wirkungsgrad von kleineren Elektroantrieben aus der normalen Massenproduktion. Zu beachten ist auch, dass das Steuergerät für den Brenner unabhängig von der Brennerlaufzeit das ganze Jahr über etwa 5 W verbraucht. Der Verbrauch der Steuergeräte sollte deshalb der Heizungsregelung zugeschlagen werden, die ebenfalls 8760 h/a in Betrieb ist.

Das Ergebnis der Messungen im stationären Betrieb ist in der folgenden Grafik zusammengefasst.

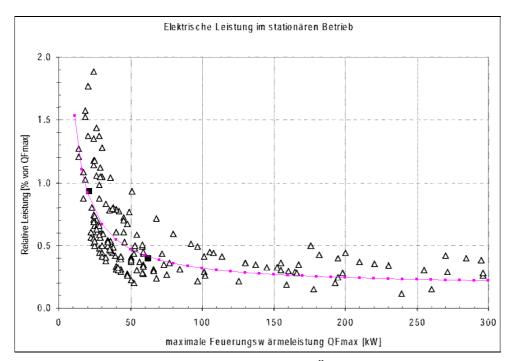
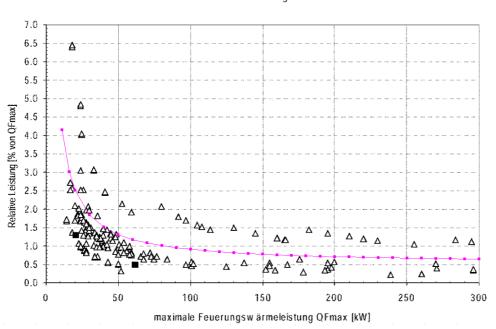


Abb. C-1 Elektrische Leistungsaufname von Ölkesseln im stationären Betrieb Empirische Ergebnisse aus: [Graf/Nipkow/Messmer 1999]

In die Darstellung der Messergebnisse wurde eine Funktion gelegt, die als Grundlage für die Abschätzung des Leistungsbedarfes von Ölkesseln dient:


$$P_{el(Betrieb)} = 150 + 1.7 \cdot P_{therm}$$
 [W]

mit: $P_{el(Betrieb)}$ Elektrische Leistungsaufnahme des Kessels im stationären Betrieb [W]

*P*_{therm} feuerungstechnische Nennwärmeleistung des Kessels [kW]

Analog der Vorgehensweise für den stationären Betrieb, wurde auch in die Darstellung der Messwerte der Leistungsaufnahme beim Start eine Näherungsfunktion gelegt.

Relative elektrische Leistung beim Start

Abb. C-2 Elektrische Leistungsaufname von Ölkesseln beim Start Empirische Ergebnisse aus: [Graf/Nipkow/Messmer 1999]

$$P_{el(Start)} = 400 + 5 \cdot P_{therm}$$
 [W]

mit: $P_{el(Start)}$ Elektrische Leistungsaufnahme des Kessels in der Startphase [W]

 P_{therm} feuerungstechnische Nennwärmeleistung des Kessels [kW]

Das Verhältnis zwischen den Startphasen und dem Vollbenutzungsstunden ist von der Auslastung des Kessels und den im Einzelfall gewählten Regelparametern (Hysterese) abhängig. Bei den Messungen des Schweizer Bundesamtes für Energie sind für repräsentative Kessel unter durchschnittlichen Einsatzbedingungen folgende Anteile ermittelt worden:

		Dauer der	
	Dauer der	durchschnittl.	
	Startphase	Betriebs-	Anteil der
	[sec]	phase [sec]	Startphase
Kleinkessel (25 kW)	22	501	4,4%
Mittelkessek (100 kW)	17	352	4,8%
Großkessel (325 kW)	17	203	8,4%

Unter Einbeziehung des Hilfsenergieverbrauches in den Startphasen (zusätzlich 5% zu den Vollbenutzungsstunden) ergibt sich damit folgende Näherungsgleichung für den Hilfsenergiebedarf während des Brennerbetriebs:

$$P_{el(Start+Betrieb)} = 170 + 1,95 \cdot P_{therm}$$
 [W]

mit: $P_{el(Start+Betrieb)}$ mittlere elektrische Leistungsaufnahme des Kessels während des Brennerbetriebs

inkl. Start [W]

 P_{therm} feuerungstechnische Nennwärmeleistung des Kessels [kW]

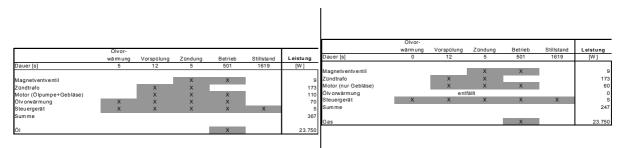
Die Schweizer Studie macht deutlich, dass ein modulierender Betrieb, wie er bei neueren Geräten üblich ist, zwar durch eine Reduktion der nötigen Startvorgänge die Emissionen verringert, den Hilfsenergieverbrauch jedoch erhöht [Graf/Nipkow/Messmer 1999]. Die Steigerung liegt jedoch mit einer Größenordung von 10% in einem Bereich, der für eine Abschätzung vernachlässigt werden kann. Ältere Brenner, die nicht der Generation der so genannten "Blaubrenner" angehören, weisen einen erheblich geringeren Hilfsenergiebedarf auf. Diese Geräte verwirbeln das Brennstoff-Luft-Gemisch weniger intensiv und verzichten teilweise auch auf eine Ölvorwärmung. Sie werden jedoch aus Gründen des Emissionsschutzes in absehbarer Zeit stillgelegt werden müssen. Es ist deshalb nicht nötig, diesen alten "Rußschleudern" noch einen Bonus für den geringeren Hilfsenergieverbrauch einzuräumen. Deshalb werden Alt- und Neugeräte bezüglich des Hilfsenergiebedarfes gleich behandelt.

Gaskessel mit Gebläsebrenner

Für Gaskessel sind bisher keine empirisch erhobenen Daten bekannt. Es ist deshalb also nur eine Abschätzung aufgrund folgender Tatsachen möglich:

- Im Grundsatz werden für Anbaubrenner bei Gasgeräten bis auf die nicht nötige Brennstoffvorwärmung die selben Komponenten verwendet, wie bei Ölbrennern.
- Die Motorleistung für die Gebläse fällt, wie sich der folgenden Liste eines Brennerherstellers entnehmen lässt etwa um den Faktor 2 geringer aus, weil keine Ölpumpe angetrieben werden muss und sich der gasförmige Brennstoff leichter mit der Luft mischen lässt als ein Ölnebel.

Motorleistung Ölbrenner


Bis Kesselleistung	30 KW	0,08 KW
Bis Kesselleistung	60 KW	0,1 KW
Bis Kesselleistung	170 KW	0,3 KW
Bis Kesselleistung	300 KW	0,62 KW

Motorieistung Gasbrenner

Bis Kesselleistung 40 KW	0,025'KW
Bis Kesselleistung 80 KW	0,055 KW
Bis Kesselleistung 150 KW	0,1 KW
Bis Kesselleistung 260 KW	0,3 KW
Bis Kesselleistung 500 KW	0,62 KW

Motordaten der Fa. Weishaupt

Leistung und Einschaltdauern der Einzelkomponenten eines 25 kW Ölbrenners Aus den Daten des Ölbrenners abgeleitet, die Ansätze für einen Gasbrenner gleicher Leistung

Aus dem Vergleich ergibt sich, dass bei bodenstehenden Gaskesseln die Leistungsaufnahme im Betrieb ca. 40% und in der Startphase ca. 70% der von Ölkesseln gleicher Leistung entspricht. Rechnet man diese Faktoren in die Näherungsgleichung ein, dann ergibt sich für den Hilfsenergiebedarf von Gaskesseln folgende Näherungsfunktion:

$$P_{el(Start + Betrieb)} = 20 + 0.85 \cdot P_{therm}$$
 [W]

mit: $P_{el(Start+Betrieb)}$ mittlere elektrische Leistungsaufnahme des Kessels während des Brennerbetriebs inkl. Start [W]

 P_{therm} feuerungstechnische Nennwärmeleistung des Kessels [kW]

Wandhängende Kessel und Thermen

Diese Geräte decken ein Leistungsspektrum von etwa 10 bis 30 kW ab und lösen im Bereich der Einfamilien- und Reihenhäuser zunehmend die bodenstehenden Kessel ab. Die Stiftung Warentest hat in Heft 11/2000 einen Test von 11 wandhängenden Gasgeräten im oben genannten Leistungsbereich veröffentlicht. Dabei wurde auch der Hilfsenergiebedarf gemessen und in eine mittlere Leistung während der Heizzeit umgerechnet. Mit Werten zwischen 70 und 111 W war die Streuung relativ gering. In diesem Leistungsbedarf ist auch der Stromverbrauch der Pumpen und der Regelung enthalten. Pauschal werden bei Rechnungen nach dem Energiepass für diesen Gerätetyp während der Heizzeit 100 W angenommen. Außerhalb der Heizperiode werden bei Geräten, die der Warmwasserbereitung dienen 20 W und bei nur Heizgeräten 15 W Dauerleistung bilanziert.

Bei diesen Geräten sind keine zusätzlichen Werte für Umwälzpumpe und Regelung zu berücksichtigen.

Holzpelletkessel

Für Pelletkessel liegen derzeit nur die Werte zweier Hersteller vor. Diese schließen den Leistungsbedarf der Brennstoffzuführung mit ein.

Für Pelletheizungen im Leistungsbereich zwischen 8 und 35 kW wird für den Hilfsenergiebedarf folgende Gleichung verwendet:

$$P_{el(Start + Betrieb)} = 70 + 2.9 \cdot P_{therm}$$
 [W]

mit: $P_{el(Start+Betrieb)}$ mittlere elektrische Leistungsaufnahme des Kessels während des Brennerbetriebs inkl. Start [W]

 P_{therm} feuerungstechnische Nennwärmeleistung des Kessels [kW]

Abb. C-3: mittlere elektrische Leistungsaufnahme Holzpelletkessel in der Heizzeit

2 Pumpen

Heizungsumwälzpumpen

Bei wandhängenden Kesseln und Thermen ist der Hilfsenergiebedarf der Umwälzpumpe(n) bereits im Stromverbrauch des Gerätes enthalten. Ist die Heizungsumwälzpumpe nicht in den Wärmeerzeuger integriert, muss der Leistungsbedarf getrennt abgeschätzt werden.

Die DIN 4701-10 Anhang C schätzt für neu zu errichtende Anlagen die Leistung der Pumpe mit einem nach der Auslegungstemperatur differenzierten Ansatz ab. Damit wird der Tatsache Rechnung getragen, dass bei abnehmender Spreizung für den Transport der gleichen Wärmemenge ein entsprechend größeres Volumen je Zeiteinheit umgewälzt werden muss.

	P _{Pumpe} [W]		
90°/70°-Heizkreis	41+0,046 A _N		
70°/55°-Heizkreis	44+0,059 A _N		
55°/45°-Heizkreis	45+0,085 A _N		
35°/28°-Heizkreis	80+0,150 A _N		

Tabelle 5.3-3 der DIN 4701-10

Dieser Ansatz berücksichtigt jedoch nicht den spezifischen Wärmebedarf der Gebäude, und ist deshalb für den Altbaubereich nicht brauchbar.

Genau wie bei Wärmeerzeugern macht sich auch bei Heizungspumpen für Einfamilien- und Reihenhäusern der spezifisch schlechtere Wirkungsgrad von kleinen Elektroantrieben bemerkbar. So hat die kleinste lieferbare dreistufig schaltbare, für den Einsatz in EFH ausgelegte 50 Watt-Pumpe in der max. Stufe einen Wirkungsgrad von 18% und in der kleinsten Stufe (20 Watt el.) sinkt der Wirkungsgrad auf 10%! Dazu kommt, dass gerade bei Pumpen Heizungsbauer dazu neigen, im Zweifelsfall lieber auf der sicheren Seite zu bleiben und deshalb überzudimensionieren. Diese Tatsachen machen es unmöglich, den Hilfsenergiebedarf für die Umwälzpumpen einfach mit einem flächenbezogenen Wert abzuschätzen. Feldmessungen im Rahmen des RAVEL-Programms in der Schweiz haben dokumentiert, dass die in der Praxis eingebauten Pumpenleistungen weit über den theoretisch nötigen Werten liegen [RAVEL 1995]. In die in doppelt logarithmischem Maßstab aufgetragene Punktewolke haben wir vier Funktionen gelegt, die einen Anhaltswert für die vermutlich verwendete Pumpenleistung liefert. Die Standards, die den Funktionen zu Grunde liegen, sind in Tabelle C-1 dargestellt.

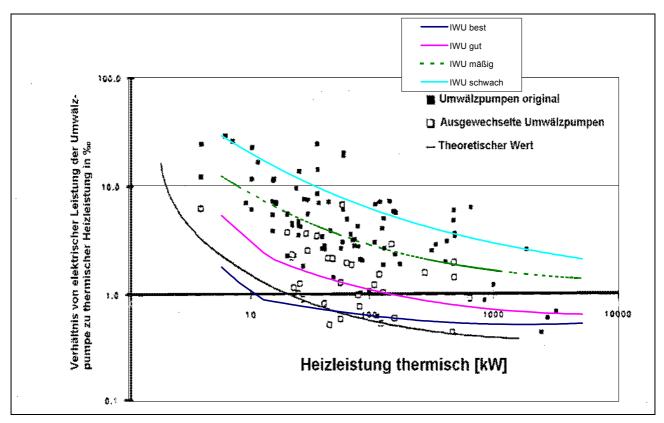


Abb. C-4: Aus der RAVEL-Studie "Leistungsreduktion bei Umwälzpumpen" die Darstellung der Pumpenleistung in Abhängigkeit der Heizlast [RAVEL 1995]; darüber gelegt: die Ergebnisse der eigenen Berechnungen mit vier verschiedenen energetischen Standards

Dabei ist unter der thermischen Heizleistung nicht die Nennleistung des installierten Kessels zu verstehen, sondern die max. Heizlast des Gebäudes (zum Zeitpunkt, als das Heizsystem bzw. die Pumpe eingebaut wurde). In diesen empirisch ermittelten Werten (Punktewolke im Diagramm) sind bereits Überdimensionierungen enthalten. Die Größe der Überdimensionierungen ist eine unter mehren Annahmen, die verschiedene Anlagenstandards beschreibt.

		Effizienz-Standard			
Eingangsgrößen:		best	gut	mäßig	schwach
Spreizung des Heizsystems	K	20	20	15	10
untere Grenze el. Leistung Pumpe	W	10	30	30	30
Einzelwiderstände:					
Heizkessel	m_{WS}	0,1	0,1	0,15	0,2
Mischer	m_{WS}	0,2	0,2	0,3	0,4
Thermostatventil	m_{WS}	0,6	0,6	1	1,4
Wärmemengenzähler	m_{WS}	0	1	1,25	1,5
Summe:		0,9	1,9	2,7	3,5
Druckverlust Verteilung	m _{ws} /m	0,005	0,005	0,0075	0,01
Faktoren für Näherungsgl. Wirkungs	grad				
Konstante C		0,0644	0,0644	0,0211	0,0041
Konstante E		0,3242	0,3242	0,4668	0,6792
Angstzuschlag Festwert	W	0	10	40	80
Angstzuschlag Prozent		0%	1%	5%	10%

Tabelle C-1: Faktoren zur Berechung der Pumpenleistung für die vier Standardvarianten (Werte für C und E aus [COSTIC 2000])

Die erforderliche Leistung der Umwälzpumpe kann im Rahmen von Energiebilanzprogrammen mit Hilfe einiger Annahmen aus den vorliegenden Gebäudedaten ermittelt werden.

Dazu wird zunächst die für den Auslegungsfall (kältester Tag des Jahres) zu erbringende mechanische Leistung berechnet. Diese ergibt sich aus dem max. Volumenstrom und dem nötigen Differenzdruck (Förderhöhe).

Der Volumenstrom berechnet sich aus:

$$\dot{V} = \frac{\dot{Q}_N}{1,16*\Delta\vartheta} \quad [m^3/h]$$

mit: $\dot{Q}_{\scriptscriptstyle N}$ Heizlast des Gebäudes bei Normauslegungstemperatur

 $\Delta \vartheta$ Temperaturdifferenz (Spreizung), abhängig vom gewählten Heizsystem

= 20 K bei klassischer 2-Rohr-Heizung (Radiatoren)

= 10 K bei Niedertemperaturheizungen und Einrohrsystemen

= 5 K bei Flächenheizungen (Wand- oder Fußbodenheizung)

Die **Förderhöhe** *h* ergibt sich aus:

$$h = \frac{R \cdot L}{1000} + \sum_{i} Z_{i} \qquad [m]$$

mit R Rohrreibungsdruckverlust [mm/m]

= 5 mm/m (entspr. 50 Pa/m) bei Altanlagen (mit größeren Querschnitten) oder neuen, auf Effizienz hin optimierten Systemen

= 10 mm/m (entspr. 100 Pa/m) im Standardfall.

Länge des Längsten Rohrstrangs [m]

L Wird aus den Gebäudedaten abgeleitet: 2*(Breite + Tiefe + Höhe) des Gebäudes. Es gelten für die Gebäudegeometrie die gleichen Setzungen wie bei der Berechnung der Zirkulationsleitungen.

 $\sum Z_i$ Summe der Einzelwiderstände [m]

für Heizkessel, Mischer, Thermostatventil und ggf. Wärmemengenzähler. Dieser Summenwert kann je nach Anlage zwischen 0,9 und 3,5 m Wassersäule betragen. Um die Ansätze für die Abschätzung der Pumpenleistung zu vereinfachen sind oben in Tabelle C-1 Faktoren zur Berechung der Pumpenleistung für die vier Standardvarianten" die Basiswerte für die Varianten aufgelistet.

Bei höheren Gebäuden und hohen Vorlauftemperaturen leistet der thermische Auftrieb einen nicht zu vernachlässigenden Beitrag zur Umwälzung des Heizmediums. Je Kelvin Spreizung und Meter Höhendifferenz sind von der Förderhöhe 0,0625 mbar, entsprechend 0,637 mm Wassersäule abzuziehen.

$$H = h - 0.000637 \cdot \Delta h \cdot \Delta \vartheta$$
 [m]

mit: H Förderhöhe vermindert um den thermischen Auftrieb [m]

h Förderhöhe ohne therm. Auftrieb [m]

0,000637 Konstante [m / (K m)]

 Δh Höhe des Gebäudes [m]

 $\Delta \theta$ Spreizung Vorlauf–Rücklauf [K]

Bei Dachheizzentralen ist $\Delta \mathcal{G}$ mit einem negativen Vorzeichen zu versehen, da hier die Pumpe gegen den thermischen Auftrieb arbeiten muss.

Die mechanische Leistung der Pumpe ist gleich der zu leistenden Hubarbeit:

 $P_{mech} = \dot{m} \cdot g \cdot H$ [W]

mit P_{mech} maximal erforderliche mechanische Leistung der Pumpe [W]

 \dot{m} max. Massenstrom [kg/s]

g Erdbeschleunigung = 9.81 m/s^2

H Förderhöhe [m]

Die mechanische Hubarbeit muss nun über den Wirkungsgrad der Pumpe in eine **elektrische Leistung** umgerechnet werden. Die Wirkungsgrade von 77 Heizungspumpen verschiedener Hersteller sind in [COSTIC 2000] zusammen getragen und die Werte der 71 typischen Geräte in Näherungsgleichungen für drei verschiedene Effizienzstandards zusammengefasst worden. Die Zahlenwerte für die Konstante und den Exponenten der Näherungsfunktionen stehen in Tabelle C-1.

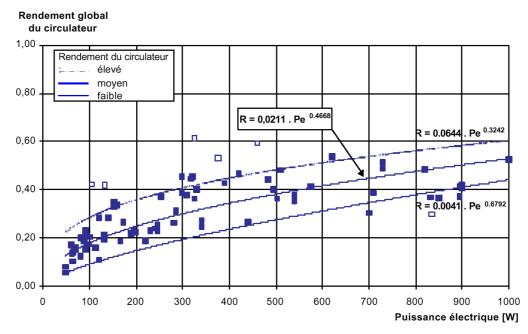


Abb. C-5: Wirkungsgrad von Heizungsumwälzpumpen in Abhängigkeit von der elektrischen Leistungsaufnahme – Ergebnisse einer Felduntersuchung (aus: [COSTIC 2000])

Die theoretische elektrische Leistung der Pumpe ist:

$$P_{el} = \frac{P_{mech}}{\eta_{Pumpe}}$$
 [W]

Dabei gilt für den Wirkungsgrad der Pumpe folgender empirisch ermittelter Ansatz:

$$\eta_{Pumpe} = \left(C \cdot P_{mech}^{E}\right)^{\frac{1}{E+1}}$$

mit: P_{el} erforderliche elektrische Leistung der Pumpe (ohne Zuschläge) [W]

 P_{mech} max. nötige Leistung der Pumpe (s. o.) [W]

 η_{Pumpe} Wirkungsgrad der Pumpe

C, E Konstanten (Wert gemäß dem vorliegenden Effizienzstandard, siehe Tabelle C-1)

Die elektrische Leistung ist somit gleich:

$$P_{el} = \left(\frac{P_{mech}}{C}\right)^{\frac{1}{E+1}}$$
 [W]

Die tatsächliche elektrische Leistung der Pumpe liegt jedoch in der Regel über dem theoretisch ermittelten Wert. Das liegt zum einen daran, dass nicht exakt jede benötigte Leistung einer Pumpe auch lieferbar ist, und zum anderen daran, dass besonders bei kleineren Anlagen häufig nicht gerechnet, sondern geschätzt und dabei aus Sicherheitsgründen eher überdimensioniert wird. Deshalb ist der Umfang, in dem eine Überdimensionierung stattfindet, in einen Festwert und einen Prozentwert auf geteilt (vgl. Tabelle C-1).

$$P_{el,real} = A + (1+B) \cdot P_{el}$$
 [W]

mit: A konstanter Angstzuschlag [W]

best = 0 W, gut = 10 W, mittel = 40 W, schlecht = 80 W

B relativer Angstzuschlag [%]

best = 0 %, gut = 1 %, mittel = 5 %, schlecht = 10 %

Speicherladepumpen

Die DIN 4701-10 Anhang C schätzt für neu zu errichtende Anlagen die Leistung der Pumpe mit dem Ansatz:

$$P_{Pumpe} = 44 + 0.059 \cdot A_N \text{ [W]}$$

Für die Laufzeit wird angesetzt:

$$t_P = 170 + 5 \cdot A_N^{0.5}$$
 [h/a]

Der Wert für die Leistung liegt dicht bei dem bisher vom Energiepass Heizung/Warmwasser verwendeten Wert:

$$P_{el} = 30 + 5 \cdot n_{WE}$$
 [W]

mit: n_{WE} Anzahl Wohneinheiten

Die Einschaltdauer wird mit folgender Gleichung berechnet:

$$t_{SpLade} = 1.2 \cdot \frac{Q_{TWW} + Q_{Vert} + Q_{Speich}}{P_{therm}}$$
 [h/a]

mit: t_{SpLade} Betriebszeit Speicherladepumpe [h/a]

Q_{TWW} Nutzenergiebedarf Trinkwarmwasser [kWh/a]

Q_{Vert} Wärmeverluste Trinkwarmwasser-Verteilung [kWh/a]

Q_{TWW} Wärmeverluste Trinkwarmwasser-Speicherung [kWh/a]

*P*_{therm} Nennwärmeleistung des Kessels [kW]

Trinkwarmwasser-Zirkulationspumpen

Das Problem einer Abschätzung des Stromaufwands für den Betrieb von Zirkulationsleitungen besteht darin, dass in Altbauten vielfach noch Heizungsumwälzpumpen als Zirkulationspumpen eingebaut sind, welche für eine größere Förderhöhe ausgelegt sind und dem zu Folge eine viel zu große Leistung aufweisen. Auch hinsichtlich der Laufzeit der Pumpen sind extreme Unterschiede möglich. Von einem Dauerbetrieb bis zu einer Schaltung über Anforderungstaster sind alle Zwischenstufen möglich. Die DIN V 4701-10 Anhang C schätzt für neu zu errichtende Anlagen die Leistung der Zirkulationspumpen mit dem Ansatz:

$$P_{Pumpe} = 27 + 0,008 \cdot A_N [W]$$

Damit ergeben sich für ein EFH ca. 30 W und für ein sehr großes Gebäude mit einem A_N von 10.000 m² lediglich 100 W. Das erscheint für optimal geplant Neubauobjekte realisierbar, ist jedoch von den Pumpengrößen, die im Altbau anzutreffen sind, weit entfernt. Bei einer exakten Dimensionierung der Pumpen wird die Leistung zu Grunde gelegt, die bei den bestehenden Strömungswiderständen nötig ist, um das Volumen der Zirkulationsleitung sechs mal je h umzuwälzen.

Der Energiepass Heizung / Warmwasser verwendet für die Zirkulationspumpen den gleichen Ansatz wie für die Speicherladepumpen:

$$P_{el} = 30 + 5 \cdot n_{WE} \qquad [W]$$

mit: n_{WE} Anzahl Wohneinheiten

Die Laufzeit z wird für die Standardwerte in DIN V 4701-10 Anhang C wie folgt berechnet:

$$z = 10 + \frac{1}{0,07 + \frac{50}{A_N}}$$

Damit ergeben sich Werte zwischen 11 und 24 h/d je nach Gebäudegröße.

Das Verfahren des Energiepasses sieht vor, die Dauer der Nachabschaltung zu ermitteln, und daraus die reale Laufzeit zu errechnen. Standardwerte sind (vgl. Toolbox-Hauptteil Tab. 8):

Einfamilienhäuser: 18 h/d

Mehrfamilienhäuser: 24 h/d

Pumpen in thermischen Solaranlagen

Bei modernen Neuanlagen geht der Trend zu solar betriebenen Gleichstrompumpen, die neben der Tatsache, dass sie keine Hilfsenergie verbrauchen, sich in der Leistung selbsttätig dem Ertrag des Kollektorfeldes anpassen und deshalb die Schichtung des Solarspeichers günstig beeinflussen.

Die DIN V 4701-10 Anhang C schätzt die Leistung der Solarpumpe mit dem Ansatz:

P_{Pumpe}=30+0,05·A_N [W]

Die Laufzeit wird pauschal mit 1750 h/a angenommen.

Im Energiepass Heizung/Warmwasser wird für die elektrische Leistungsaufnahme von Umwälzpumpen im Solarkreis folgende Formel angesetzt:

$$P_{el} = 20 + 5 \cdot n_{WE} \qquad [W]$$

mit: n_{WE} Anzahl Wohneinheiten

Ist die jährliche Betriebszeit nicht bekannt, wird sie pauschal auf 1500 h/a angesetzt.

3 Regelungen

Die elektronischen Bauteile, mit denen Regelungen aufgebaut werden, kommen mit sehr wenig Strom aus. In der Regel sind es nur wenige Watt. Der Stromverbrauch der Regelgeräte wird hauptsächlich von der Auswahl bzw. der Qualität der verwendeten Netzteile bestimmt. Am Markt befinden sich Geräte mit erheblichen Unterschieden bezüglich der Leistungsaufnahme, die nichts mit dem Funktionsumfang der Geräte zu tun haben. So gibt es Solarregler, die mit 3 W auskommen, und einfach Kesselsteuerungen, die 15 W verbrauchen.

In der DIN 4701-10 werden, außer bei den Lüftungsanlagen (in diesem Fall wird auf Herstellerangaben verwiesen), regelungstechnische Einrichtungen bezüglich ihres Hilfsenergiebedarfes nicht gesondert bilanziert.

Der Energiepass Heizung/Warmwasser verwendet Schätzwerte, die nach der Gebäudegröße und dem Baualter der Heizanlagen differenziert sind. Diese Werte enthalten auch den Energiebedarf der Stellantriebe (motorisch gesteuerter Mischer u.s.w.).

Jahr des Einbaus der	EFH	MFH
Heizungsanlage		
vor 1980	20 W	35 W
1980-1990	15 W	25 W
nach 1991	10 W	20 W

Bei Gebäuden mit Etagenheizung: 15 W/Wohneinheit

Regelungen für Solaranlagen und Lüftungsanlagen: 5 W

Grundsätzlich wird bei Regelungen von einer ganzjährigen Betriebszeit 8760 h/a ausgegangen.

4 Literatur zu Anhang C

[COSTIC 2000] Cyssau, R.; Mortier, E.; Palenzuela, D.: La puisssance du circulateur - est-

elle adaptée a celle de l'installation de chauffage? Comité scientifique et technique des industries climatique (COSTIC), Saint Rémy lès Chevreuse

2000

[RAVEL 1995] Sigg, René; Keller, Lucien: Leistungsreduktion bei Umwälzpumpen.

Sparpotentiale, Dimensionierungsgrundlagen, Betriebserfahrungen; Materialien zu RAVEL; Schweizer Bundesamt für Konjunkturfragen; Bern

1995

[Graf/Nipkow/Messmer 1999] Graf, Peter; Nipkow, Jürg; Messmer, Ruedi: Hilfsenergieverbrauch von Öl-

und Gasfeuerungen; im Auftrag des Schweizer Bundesamt für Energie;

Bern 1999